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ABSTRACT
This paper describes the GridPACKTMframework, which is
designed to help power grid engineers develop modeling soft-
ware capable of running on high performance computers.
The framework makes extensive use of software templates
to provide high level functionality while at the same time
allowing developers the freedom to express whatever models
and algorithms they are using. GridPACKTMcontains mod-
ules for setting up distributed power grid networks, assigning
buses and branches with arbitrary behaviors to the network,
creating distributed matrices and vectors and using parallel
linear and non-linear solvers to solve algebraic equations. It
also provides mappers to create matrices and vectors based
on properties of the network and functionality to support
IO and to manage errors. The goal of GridPACKTMis to
substantially reduce the complexity of writing software for
parallel computers while still providing efficient and scalable
software solutions. The use of GridPACKTMis illustrated
for a simple powerflow example and performance results for
powerflow and dynamic simulation are discussed.

Keywords
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1. INTRODUCTION
The electric power grid has been characterized as being the
largest machine in the world, but in spite of this it is still
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being modeled primarily on workstations running serial pro-
grams. Many other technologies (e.g. the internal combus-
tion engine[4]) are, on the other hand, being modeled in ways
that can fully exhaust the resources of the largest available
computing systems. Power grid engineers have spent enor-
mous effort and ingenuity reducing simulations of the grid
to manageable sizes, but these reductions have resulted in
approximations and loss of detail which may be hiding or
obscuring important features and behaviors of the electric
power grid. Furthermore, as more energy is derived from re-
newable sources, the complexity and unpredictability of the
grid will increase. The influx of more information from data
sources such as smart meters is also making the task of mod-
eling even small networks more challenging. The power grid
is clearly an appealing target for high performance comput-
ing (HPC) but few tools are available to assist power grid
engineers interested in writing code that runs on HPC plat-
forms.

Existing power grid modeling tools that are widely used by
today’s utilities are built on serial kernels, some of which rep-
resents legacy code going back decades. These codes used
array-based models of programming, in spite of the hetero-
geneity of power grid networks. In many cases, codes have
not made use of modern, object-oriented constructs, even
though these would be a natural fit. Furthermore, most of
the code used in power grid modeling is proprietary commer-
cial software, so there is no access to the source code and
development is not focused on creating modules that can be
used in a general context. Even when access to the source
code is available, it still requires significant code redesign
and reconstruction to utilize HPC technologies, partly be-
cause these serial codes have been highly optimized to run
on single processors. Some recent efforts have been to made
to construct parallel versions of power grid simulations, but
these have been single application development efforts and
again, have not resulted in software that is useful across
multiple applications. Recent examples of parallel power
grid applications include power flow[18], contingency analy-
sis[13, 6], state estimation[8, 6] and dynamic simulation[15].

This paper will describe the GridPACKTMframework for de-
veloping parallel power grid simulations that run on HPC



platforms with high levels of performance and scalability.
Frameworks have appeared in other contexts and been used
to reduce the programming burden on domain scientists
by making complex but commonly used motifs available
through libraries or other mechanisms. Both the Commu-
nity Climate System Model[7] and Weather Research and
Forecasting Model[19] are framework-based approaches to
developing climate and weather models. The Cactus frame-
work is designed to support grid-based applications and is
widely used in the numerical general relativity community[10].
The Common Component Architecture[2] is a framework de-
signed to support modularization of codes and has been used
successfully in some groundwater applications[21]. Other
examples of frameworks or modular approaches to code de-
velopment can be found, particularly among large software
projects with a broad developer base.

The GridPACKTMframework is designed to allow power sys-
tem engineers to focus on developing working applications
from their models without getting bogged down in the de-
tails of decomposing the computation across multiple proces-
sors, managing data transfers between processors, working
out index transformations between power grid networks and
the matrices generated by different power applications, and
managing input and output. The framework relies heavily
on software templates to allow users to develop application-
specific components that can then be plugged into generic
modules that handle many of the more complicated book-
keeping tasks. The description of network components and
their contributions to algebraic equations are left to the ap-
plication developer, but many other functions can be han-
dled by the framework itself. These include creating dis-
tributed network objects, setting up distributed matrices
and vectors, linear and non-linear solvers and IO. This ap-
proach provides flexibility where it is needed, in the specifi-
cation of the models and equations that are to be addressed
by the application, while encapsulating much of the tedious
book-keeping and index calculations associated with pro-
gramming in a distributed environment. The following will
summarize the overall design of the GridPACKTMframework
and then describe the major modules and some applications
that have been developed with them.

2. GRIDPACKTMSOFTWARE STACK
GridPACKTMis currently available as a collection of C++
modules and has taken a strongly object-oriented approach
to software development. Power grids can be thought of as
directed graphs with nodes (referred to as buses in power
grid terminology) representing elements such as generators,
loads, etc. and edges (branches in power grid terminology)
representing transmission lines and transformers. The core
software objects are user-developed descriptions of the prop-
erties and behavior of buses and branches. Bus and branch
objects specify all the properties of the power grid and are
also responsible for evaluating the contribution of the net-
work element to whatever equations are going to be used in
the power grid analysis.

The network components are derived from base classes that
specify a set of virtual functions that can be implemented
by the user. Depending on the application, some or all of
these functions can be implemented. Those that are not im-
plemented default to simple no-ops. In addition, a few func-

Figure 1: A schematic diagram of the
GridPACKTMsoftware stack. Framework mod-
ules are colored green, user-supplied modules are
colored blue. User modules that can be used across
multiple applications are colored red.

tions are provided that are used either internally by other
parts of the framework or are intended for use by develop-
ers as is. These include operations such as obtaining a list
of objects that are connected to the requesting object and
returning the unique integer identifier of a bus.

The user-developed base and branch components can then
be embedded in the rest of the framework and used to cre-
ate different power grid applications. A schematic picture
of the framework software stack is shown in Figure 1. The
core data objects in most power grid applications are a rep-
resentation of the power grid network and matrices and vec-
tors that are generated by the equations describing the sys-
tem. A key requirement of a power grid-oriented frame-
work is to provide distributed representations of these ob-
jects. GridPACKTMcontains modules for creating both dis-
tributed networks and distributed algebraic objects. In ad-
dition, GridPACKTMalso supplies a set of components that
can be used to map between the two.

Many of the modules in GridPACK are software templates
and can be used to create application-specific instances. The
network class is a template that depends on user-supplied
bus and branch classes. Other modules in the framework
depend on the network, so once the buses and branch classes
are specified, they can be used to create application-specific
versions of many of the remaining modules.

In addition to the bus and branch class, the application de-
veloper is responsible for generating two other classes. The
first is a factory that is responsible for operations that run
over the entire network and the second is a high level ap-
plication driver that controls overall program flow and im-
plements the solution algorithm. The user factory inherits
from a base factory class that contains some important ini-
tialization functions. Additional functions usually consist of
operations that trigger a method on each bus and branch.



Figure 2: A schematic diagram illustrating the re-
lationship of different GridPACKTMsoftware classes
to each other. Framework classes are colored green
and user-supplied supplied classes are colored blue.

The application driver instantiates the network, reads in a
network configuration from an external file and runs the par-
titioning algorithm on it, creates the mappers that can be
used to generate the matrices and vectors used in the alge-
braic equations that are to be solved as part of the analysis,
implements the solution algorithm and writes the results to
output. The actual driver code itself is fairly compact and
consists primarily of calls to other modules.

A diagram showing the relationship of the basic software
classes to each other is shown in Figure 2. The application
developer is responsible for creating the application bus and
branch classes, most of the application-specific behavior of
the framework is then derived from the application buses
and branches. The factory class can also be customized to
support network-wide operations that are specific to a par-
ticular application. The only remaining code that requires
user development is the driver, which controls the overall
behavior of the application. As discussed below, this can be
written at a high level and is relatively compact.

GridPACK targets three major functionalities

• Distributed graphs representing the topology of the
power grid

• Distributed matrices and vectors and parallel solvers
and preconditioners. The solution algorithms for power
grid problems are usually expressed in terms of linear
or non-linear algebraic equations.

• The mapping of objects located on the network to dis-
tributed matrices and vectors. For example, the diag-
onal elements of the admittance matrix are associated
with buses and the off-diagonal elements are associated
with branches. The mapping between the network and
matrix elements can be automated to a considerable
extent.

Additional functionality provided by the framework sup-
ports IO, task management, profiling, error handling, etc.

The network class manages distribution of the power grid,
partitioning of the network and exchange of ghost data be-
tween processors. Ghost buses and branches represent copies
of network components that are owned by other processors
but are directly connected to elements on the local process.
In order to update the state of local objects, it is often nec-
essary to have current values for ghost components and this
requires interprocessor communication.

The network also serves as a container for the objects that
define the behavior of buses and branches in the actual power
grid model. Bus and branch behaviors frequently depend
on the objects immediately attached to them so that buses
depend on the branches that are attached to them (and
possibly on the buses attached to them via a branch) and
branches depend on the buses attached at either end of the
branch. Providing easy access to these attached objects is
another function of the network module.

Basic algebraic objects, such as matrices and vectors, are
a core part of the solution algorithms required by power
grid analyses. These also tend to be large data objects
that must be distributed across processors. Furthermore,
the solution algorithms built around these data objects are
generally the most time-consuming part of program execu-
tion, so it is necessary to ensure that the solutions are fully
parallel as well. Most solution algorithms are dominated
by sparse matrices but a few, such as Kalman filter anal-
yses[17] and dynamic simulation[14], require dense matri-
ces. Vectors are typically dense. There exists a rich set of
libraries for constructing distributed matrices and vectors
and these also contain preconditioner and solver capabili-
ties. GridPACKTMleverages this work heavily by creating
wrappers around these libraries that can be used in solution
algorithms. Wrapping these libraries instead of using them
directly has two advantages 1) creating these algebraic ob-
jects can be simplified somewhat for power grid applications
and 2) it allows developers to investigate new solver and al-
gebraic libraries seamlessly, without disrupting other parts
of the code. The current GridPACKTMimplementation is
built on top of the PETSc[3] libraries but other possibilities
include Hypre[9] and Trilinos[12]. All these libraries support
distributed matrices and vectors, basic algebraic operations
such as matrix-vector multiply, inner products, etc. and a
variety of solution methods for linear and non-linear equa-
tions.

Finally, there is a need to support the generation of matri-
ces from objects in the network and the ability to push data
from solution vectors back down into network objects. This
is one of the most complicated and error-prone parts of writ-
ing code, especially for parallel platforms. Much of the work
involved in setting up matrices can be eliminated by having
users implement a few functions that provide the individual
matrix elements contributed by each bus or branch. The
mapping function can then assemble these elements into a
complete matrix for the entire system. The fact that de-
velopers can focus on writing code for individual matrix el-
ements reduces the amount of programming required and
fits in more intuitively with the physical models. The com-



plicated index calculations required to evaluate the global
offsets needed to set up a distributed matrix can be left to
the framework.

These three capabilities are at the core of GridPACKTM, but
numerous additional modules are built around them. These
include import modules for injesting network configuration
files and using these to set up a network object, output mod-
ules that can be used to gather data from buses and branches
and write them to output, a task manager that can be used
to partition tasks out to either separate processors or to
processor groups to support multiple levels of parallelism, a
configuration module to manage input from an XML-based
input deck, profiling and error handling. Many of these are
also templated from the network class and some can be cus-
tomized to particular networks by modifying methods in the
bus and branch classes.

As already mentioned, GridPACKTMis written in C++, al-
though work on a Fortran interface is currently in progress.
Communication is handled through a combination of the
Message Passing Interface (MPI)[11] and Global Arrays
(GA)[20] communication libraries. The matrix and solver
functionality comes from the PETSc[3] libraries and network
partitioning is accomplished using Parmetis[16].

3. GRIDPACKTMMAPPERS
The network module is responsible for distributing the net-
work across available processors. Figure 3 shows a parti-
tion of the Western Electric Coordinating Council (WECC)
network across 16 processors. This partition results in each
processor containing a relatively connected subnetwork with
minimal connections to other processors. Once the network
is partitioned, the problem of mapping matrix elements gen-
erated from the buses and branches becomes a formidable
challenge. This is further complicated by the fact that for
many applications, not all buses and branches contribute the
same number of elements and some may contribute nothing
at all. Assigning global indices to these elements in a con-
sistent way that also matches the row-block partition of the
distributed matrices can be a daunting challenge, even for
experienced parallel programmers.

The mapper module is designed to simplify this process con-
siderably. It works in conjunction with routines defined in
the base component classes that require each bus and branch
to provide a list of matrix elements contributed by that net-
work component. For many grid applications, such as power
flow and dynamic simulation, both the dependent and in-
dependent variables are associated with the buses so buses
are associated with diagonal blocks and branches with off-
diagonal blocks. The functions in the base network com-
ponent class return the dimension of the matrix block as-
sociated with that component and the values of the matrix
elements. For most applications, these blocks are relatively
small, on the order of 1 × 1 or 2 × 2 for diagonal blocks.
Furthermore, the values of the matrix elements contributed
by any network component only depend on properties of
components that are immediately connected to that compo-
nent. For example, a diagonal element Yii of the Y-matrix,
which is used in a great many power grid applications, can

Figure 3: Partitioning of the WECC network across
16 processors. Each color represent the buses and
branches associated with a different processor.

be written as a sum

Yii = −
X

j

Yij

The diagonal element Yii is evaluated on bus i and the terms
Yij exist on the branches connected to bus i. The evalua-
tion of the matrix element is relatively local and can be
performed by looping over connected elements.

The way the mapper uses these elements is illustrated in
Figure 4. Figure 4(a) shows a hypothetical network. Figure
4(b) shows the contributions to the matrix from all buses
and branches. Note that some network components con-
tribute nothing, and not all components contribute the same
sized blocks. The mapping of the individual block from the
network in Figure 4(b) to initial matrix locations based on
network location is shown in Figure 4(c). This is followed in
Figure 4(d) by the elimination of gaps in the matrix due to
rows and columns with no values.

An example of a matrix generated using the GridPACKTM

mappers is shown in Figure 5. The matrix is distributed on
4 processors. The large blocks along the diagonal represent
connections between buses on the same processor, matrix
elements outside these blocks are generated from branches
connecting buses on different processors. The block struc-
ture is the result of creating internal indices such that all
the buses that are owned by a processor are indexed consec-
utively. The block structure should also improve the perfor-
mance of preconditioners used with the solvers.

A more general matrix-vector interface has been developed
that can handle systems where dependent and independent
variables are associated with both buses and branches. This
occurs in applications such as state estimation[1], Kalman
filter analysis and market optimization. However, the gen-
eralized interface and the associated mappers still only need
local information in order to implement the functions in the
interface that are used to build matrices. These remain rela-



Figure 4: A schematic diagram of the matrix map
function. (a) a small network (b) matrix blocks as-
sociated with branches and buses. Note that not
all blocks are the same size and not all buses and
branches contribute (c) initial construction of ma-
trix based on network indices (d) final matrix after
eliminating gaps The bus numbers in (a) and (b)
map to approximate column locations in (c).

Figure 5: Fill pattern for the Jacobian matrix for a
power flow calculation on the WECC network on 4
processors. The lines are a guide to the eye. The
4 blocks on the diagonal represent connections be-
tween buses on the same processor, the remaining
elements are between buses on different processors

tively simple calculations and do not require complex index
evaluations on the part of application developers.

4. MATH LIBRARY INTERFACE
The math module in GridPACKTMrelies on the PETSc li-
braries for its solvers and support for distributed matrices
and vectors. The current math interface can be used to
create both sparse and dense distributed matrices and vec-
tors and provides access to a broad spectrum of linear and
non-linear solvers. Different solvers can be accessed by us-
ing PETSc’s runtime options data base, which can invoke
different solvers using string arguments. These strings can
be extracted from the input deck and passed through to the
math module using the configuration module.

In addition to constructing matrices and vectors, the math
interface supplies many basic algebraic operations. These in-
clude various types of norms (L2, L∞, etc.), matrix-vector
multiplies, matrix transpose, scaling by a value, addition,
etc. Linear and non-linear solvers are also supplied by the in-
terface. The solver interfaces are relatively simple and most
functionality is accessed by specifying options in the input
deck that are passed directly to the solver. Alternatively,
the interface could support different solvers and these would
be accessed by instantiating different solver objects at the
application level based on user input. However, this leads
to a more complicated interface with likely dependencies on
the underlying math library. A smaller interface that relies
on runtime options is more transferable between different
libraries, although it is likely that the user input file would
have to change if an application was linked to a different
math module implementation.

5. COMMUNICATION IN GRIDPACKTM

GridPACKTMrelies on both MPI[11] and Global Arrays[20]
for communications. To support multiple levels of paral-



lelism and multiple-task algorithms, it was also important to
guarantee that GridPACK could run on process groups be-
yond the world group. This meant creating a GridPACKTM

communicator class that contained both an MPI commu-
nicator and a GA processor group. The network class is
instantiated with a communicator and this can be used to
restrict the network to a subset of processors. This behav-
ior then passes down to any objects that are instantiated
from the network. Networks distributed over a subset of
processors are needed for applications such as contingency
analysis[5] that run many independent parallel tasks.

Many of the other modules in GridPACKTMuse GA for com-
munication. The primary reason is the availability of the GA
gather, scatter and scatter-accumulate calls. These func-
tions allow random access to individual elements in a dis-
tributed array of data. The GA gather/scatter functions
are one-sided and can be called from any process without
a corresponding call on another process. Data consistency
must be maintained by the programmer using global syn-
chronization calls that consist of a combination of a fence,
to flush out all outstanding communication, and a barrier.

The gather and scatter calls can be used to implement func-
tions such as the ghost bus and ghost branch updates in a
straightforward array. For example, each of the buses that
is local to a process is given an internal index such that all
the local buses on a process are indexed using a consecutive
set of integers and the overall set of integers runs from 0
to N − 1, where N is the total number of integers. A one-
dimensional distributed GA array is created such that the
portion of the array that is local to each process is the same
size as the number of local buses. The size of the individ-
ual data elements is equal to the size of the total amount
of data that each bus must exchange in a ghost bus update
operation. Note that although different buses may behave
in different ways, with some functionality turned on or off,
the amount of data exchanged must reflect the total amount
of data that could be needed on a remote bus. This has to
be done because all data elements in a GA array must be
the same size.

In the first stage of the update, the information from all
local buses is scattered to the global array. This operation
is fast because all data transfers are on the same process
and only involve shared-memory copies. A synchronization
operation is then implemented to flush out all outstanding
communication and thereby guarantee that the GA is in a
known state. Failing to implement a synchronization can
result in a race condition where some buses receive stale
data. Each process can then copy the data elements to its
ghost buses using a GA gather call. The entire process is
illustrated schematically in Figure 6.

The one-sided gather-scatter functionality is also used to
implement the mappers. The construction of the matrices
from network contributions requires a calculation to deter-
mine what the offsets in the target matrix are for the rows
and columns associated with each of the locally owned buses.
This information needs to be made globally available so that
the off-diagonal contributions to the matrix, which come
from the branches, can be properly placed in the matrix as
well. The one-side gather-scatter operations, as well one-

Figure 6: Schematic diagram of network bus update
operation for a small network distributed on two
processors. The local arrays of buses are denoted
by the blue and red boxes, the global array used for
transferring data is represented by the green boxes

sided get and put operations (which move blocks of data)
are used to implement these calculations.

Other communication intensive parts of the code are asso-
ciated with input and output. Buses are identified by a
unique integer but there is no requirement on that these
integers represent a monotonic consecutive sequence of in-
tegers, so there is no natural index that can be used as a
starting point for organizing data. Similarly, branches are
only identified by the indices of the buses at either end of
the branch. This lack of initial organization in the data adds
an additional layer of complexity to the problem of moving
data from the input processes to the processes that actually
end up holding the corresponding buses and branches. The
current input and output routines use a combination of MPI
and Global Arrays to map data data to the correct processes
and then move it to where it can be used.

6. PROGRAMMING APPLICATIONS WITH
GRIDPACKTM

The top-level driver for a GridPACKTMis relatively simple
and comparable in complexity to scripting languages such as
Python or Matlab. An example driver for a power flow appli-
cation (one of the basic power grid calculations) is shown in
Figure 6. Before discussing this code, it should be noted that
the bulk of the effort in creating the application was in writ-
ing the bus and branch classes (in this case the PFBus and
PFBranch classes). However, these classes are also the most
reusable. For example, many power grid applications, in-
cluding this one, require the calculation of a Y-matrix, or at
least need to use its matrix elements as parameters in other
calculations. Thus, a good implementation of the Y-matrix
bus and branch classes can be used across many applications
by inheriting from them to create bus and branch classes for
more specific cases. This promotes software reuse and also
makes it possible to propagate improvements or bug fixes to
the Y-matrix classes easily to other applications that use it.



In Figure 1, the bus and branch classes represented by the
boxes in red have all been used in more than one application.

The power flow driver shown in Figure 6 does not have many
of the features that an actual application would have, includ-
ing the ability to set parameters from an external input file,
output of results and profiling of timing behavior, but it is
sufficient to implement an actual powerflow calculation us-
ing a Newton-Raphson iterative loop to get a solution for
the non-linear power flow equations. The driver starts by
defining the power flow network and factory classes (lines 1
and 2). It then creates a communicator for the entire world
group of processors and uses it to create a network instance
(line 4). The application next creates a network configu-
ration parser for configuration files using the PSSE/version
23 format and uses this to injest a configuration from the
file “network.raw” (lines 7 and 8). The network is then dis-
tributed across processors in a form suitable for calculation
by calling the network method “partition” (line 9). At this
point, the network is distributed across processors and the
buses and branches have been created. The parameters for
each bus and branch from the network configuration file are
stored in a generic data collection object.

In lines 11 through 14 a factory object is created and used
to finish initializing the network. The factory load method
calls a load method in the network component base class that
takes the data collection object on each bus and branch as
an argument. The component level load method extracts
the contents of the data collection object and uses these
to initialize the corresponding bus or branch. After calling
the load method, the buses now have all their properties
and behaviors set and can be used in computation. The
setComponents method initializes internal indices that are
used in the mappers. It also sets a list of pointers in the
buses that point to all the neighbor branch and two point-
ers in the branches that point to buses at each end of the
branch. This enables the buses and branches to access at-
tached elements directly without having to go through the
network object. The call to setExchange sets up the internal
exchange buffers that allow ghost components to be updated
with current information from remote processors.

The initBusUpdate call initializes data structures that are
used in data exchanges between processors. This calculation
does not need to update information on ghost branches so
there is no corresponding call to initialize a branch update.
The calls to the factory methods setYBus and setSBus loop
over network components and call a corresponding method
on each of the buses and branches. These perform internal
calculations to evaluate the matrix elements of the Y-matrix
and some values that are used to set up the right hand side
vector in the powerflow calculation. Line 20 sets the mode to
RHS. This causes an internal parameter in all the buses and
branches to be set to the value RHS and controls what set
of values are returned by the matrix-vector interface when
a matrix mapper is instantiated (line 21). In line 22, the
mapper is used to create a new distributed vector PQ that
represents the right hand side of the powerflow equations.
Line 24 is used to switch the mode to Jacobian. Line 25
creates a mapper that is used to create the Jacobian matrix
in the powerflow equations and line 26 creates the first iter-
ation of this matrix. Line 27 makes a copy of the right hand

side vector that can be used for the solution.

Lines 29 through 33 set some control parameters and create
a linear solver instance. Line 37 then solves the equations
for the current values of J and PQ and returns the solution
in X. The L∞ norm is evaluated in line 38 and used to set
the initial value of the tolerance variable. If this is less than
the tolerance threshold, then the calculation is done, oth-
erwise it enters the iterative Newton-Raphson loop. This
is similar to the calculation of the first solution, with the
exception of the call to mapToBus at line 43 and the net-
work updateBuses at line 44. The mapToBus call pushes
the values from the solution back into the network buses
and updates internal bus parameters. The updateBuses call
distributes these updated values to the ghost buses. The cal-
culation then recalculates the Jacobian and right hand side
vector and produces a new solution. This continues until
either the convergence threshold is reached or the iteration
count is exceeded.

The main feature of this code is that the solution algorithm
is expressed at a fairly high level and involves abstractions
representing matrices and vectors and the network. It does
not require any of the internal details of these objects, so
the algorithm can be written in a compact manner. Other
algorithms involving the same algebraic objects could also
be explored easily with minimal code development.

The results of a scaling study on the power flow code im-
plemented using GridPACKTMare shown in Figure 8 for an
artificial power grid network consisting of 777646 buses. The
results indicate reasonable scaling up to 32 processors but
poor scaling in some of the setup routines (parsing the net-
work configuration file and partitioning). Because powerflow
calculations only require a single solve, external setup is a
much larger factor than in many other types of numerical
simulation. Work is ongoing to improve the performance of
both the parsing and partitioning.

A more scalable application has been dynamic simulation,
which is used to study the behavior of transients in the elec-
tric power grid[14]. This algorithm has an iterative time
integration loop that amortizes the setup costs. The scal-
ing results are shown in Figure 9 for the WECC network.
This is a much smaller network than the artificial problem
used in the powerflow calculation and only contains 16351
buses. The algorithm has a dense matrix solve at the start
and then a sequence of matrix transpose-vector multiplies in
the integration loop. The initial dense linear solve is moder-
ately scalable (up to about 8 processors) and the transpose-
multiply more so. The partitioner is not scaling but only
begins to contribute significantly to the overall performance
at large core counts. Scaling is seen out to 32 processors but
there is still a slight decrease all the way to 64 processors.

Overall, reasonable levels of scaling are seen for the power-
flow and dynamic simulation applications, but the relatively
small size of today’s power grid problems makes it difficult to
achieve high levels of scalability. However, as HPC becomes
more accessible to the power grid community, we expect to
see an increase in the size and complexity of the models be-
ing studied. There is also a great deal of current interest
in contingency analysis simulations, where a large number



1 typedef BaseNetwork<PFBus,PFBranch> PFNetwork;

2 typedef BaseFactory<PFNetwork> PFFactory;

3 Communicator world;

4 shared_ptr<PFNetwork>

5 network(new PFNetwork(world));

6

7 PTI23_parser<PFNetwork> parser(network);

8 parser.parse("network.raw");

9 network->partition();

10

11 PFFactory factory(network);

12 factory.load();

13 factory.setComponents();

14 factory.setExchange();

15

16 network->initBusUpdate();

17 factory.setYBus();

18

19 factory.setSBus();

20 factory.setMode(RHS);

21 BusVectorMap<PFNetwork> vMap(network);

22 shared_ptr<Vector> PQ = vMap.mapToVector();

23

24 factory.setMode(Jacobian);

25 FullMatrixMap<PFNetwork> jMap(network);

26 shared_ptr<Matrix> J = jMap.mapToMatrix();

27 shared_ptr<Vector> X(PQ->clone());

28

29 double tolerance = 1.0e-6;

30 int max_iteration = 100;

31 ComplexType tol;

32 LinearSolver solver(*J);

33

34 int iter = 0;

35

36 // Solve matrix equation J*X = PQ

37 solver.solve(*PQ, *X);

38 tol = PQ->normInfinity();

39

40 while (real(tol) > tolerance &&

41 iter < max_iteration) {

42 factory.setMode(RHS);

43 vMap.mapToBus(X);

44 network->updateBuses();

45 vMap.mapToVector(PQ);

46 factory.setMode(Jacobian);

47 jMap.mapToMatrix(J);

48 solver.solve(*PQ, *X);

49 tol = PQ->normInfinity();

50 iter++;

51 }

Figure 7: . Top-level driver for a powerflow appli-
cation using GridPACKTM.

Figure 8: Strong scaling results for a powerflow cal-
culation using on an artificial network containing
777646 buses

Figure 9: Strong scaling results for a dynamic sim-
ulation calculation using on the WECC network



of configurations of the grid are evaluated in separate, inde-
pendent calculations. These are inherently parallel and can
be scaled to very large numbers of processors.

Beyond conventional scaling to larger size problems, indus-
try is also interested in using computation in the context of
real-time control to make operational decisions about run-
ning the electric power grid. This requires reducing the
time to solution for fixed sized problems. Again, there are
many challenges. Most conventional HPC applications have
relatively short setup phases and extended computational
phases that can be used to amortize the cost of distribut-
ing and initializing the calculation. This is not the case for
many power grid applications and as seen in the case of the
powerflow calculation, the cost of input, setup, initializa-
tion and output can be a major fraction of the total run
time. Thus, reducing overall computational time requires
reduction in all phases of the computation, instead of fo-
cusing on only a few parts of it. Many of these bottlenecks
tend to cluster around the areas of input and output and
are aggravated by the relatively unstructured nature of the
data. Mapping the data associated with particular buses
and branches to the actual objects corresponding to those
buses and branches tends to be an exercise in distributed
hashing that is both complicated in itself and a source of
significant communication overhead.

7. CONCLUSIONS
This paper has described a framework for creating power
grid applications that run on HPC platforms. Most of the
parallel programming has been embedded in high level ab-
stractions and the application developer is left to write the
portions of the code that express the actual detailed models
and the equations that describe them. The GridPACKTM

framework has, to date, been used to develop a number of
power grid applications, These include powerflow, dynamic
simulation, and contingency analysis based on both pow-
erflow and dynamic simulation calculations. A state esti-
mation application is currently in development and appli-
cations based on Kalman filter analysis and optimization
are planned in the next year. The existing applications have
demonstrated that GridPACKTMhas the flexibility to imple-
ment a range of calculations using a relatively small number
of modules with reasonable levels of scalability. As the scale
of power grid applications increases, we anticipate that the
performance gains from using parallel computing will in-
crease as well.

GridPACKTMis distributed under a BSD open-source license
and is available for download at https://gridpack.org.
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T. Radke, E. Seidel, and J. Shalf. The Cactus
framework and toolkit: Design and applications. In
Lecture Notes in Computer Science, pages 197–227.
5th International Conference on High Performance
Computing for Computational Science (VECPAR
2002), June 2003.

[11] W. Gropp, E. Lusk, and A. Skjellum. Using MPI:
Portable Parallel Programming with the
Message-Passing Interface. The MIT Press,
Cambridge, MA, 1999.

[12] M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu,
T. Kolda, R. Lehoucq, K. Long, R. Pawlowski,
E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro,
J. Willenbring, A. Williams, and K. Stanley. An
overview of the trilinos project. ACM Trans. Math.
Softw., 31(3):397–423, September 2005.

[13] Z. Huang, Y. Chen, and J. Nieplocha. Massive
contingency analysis with high performance
computing. In Proc. IEEE Power Energy Society
General Meeting. IEEE, 2009.

[14] Z. Huang, S. Jin, and R. Diao. Predictive dynamic



simulation for large-scale power systems through
high-performance computing. In The 2nd
International Workshop on High Performance
Computing, Networking and Analytics for the Power
Grid. International Conference High Performance
Computing Networking Storage and Analysis, SC12,
November 2012.

[15] S. Jin, Z. Huang, R. Diao, D. Wu, and Y.Chen.
Parallel implementation of power system dynamic
simulation. In Power and Energy Society General
Meeting (PES), pages 1–5. IEEE, July 2013.
doi:10.1109/PESMG.2013.667265.

[16] G. Karypis and V. Kumar. A parallel algorithm for
multilevel graph partitioning and sparse matrix
ordering. J. Parallel and Distr. Comput., 48:71–95,
1998.

[17] Y. Li, Z. Huang, N. Zhou, B. Lee, R. Diao, and P. Du.
Application of ensemble kalman filter in power system
state tracking and sensitivity analysis. In Proceedings
of the 2012 IEEE Power and Energy Society
Transmission and Distribution Conference and
Exposition. IEEE, May 2012.

[18] P. Luo, F. Yang, and M. Rao. A parallel approach to
computing load flow equations. Dyanmics of
Continuous, Discrete and Impulsive Systems, Series
B: Applications and Algorithms, 11:229–238, 2004.

[19] J. Michalakes, J. Dudhia, D. Gill, T. Henderson,
J. Klemp, W. Skamarock, and W. Wang. The weather
research and forecasting model: Software architecture
and performance. In Use of High Performance
Computing in Meteorology, pages 156–168. 11th
WOrkshop on the Use of High Performance
Computing in Meteorology, October 2005.

[20] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan,
H. Trease, and E. Apra. Advances, applications and
performance of the global arrays shared memory
programming toolkit. Int. J. High Perf. Comput.
Applications, 20(2):203–231, Summer 2006.

[21] B. Palmer, V. Gurumoorthi, A. Tartakovsky, and
T. Scheibe. A component-based framework for
smoothed particle hydrodynamics simulations of
reactive fluid flow in porous media. Int. J. High Perf.
Comput. Applications, 24(2):228–239, Summer 2010.


