
1 
 

GridPACK™ Overview 

This document is designed to provide an in-depth description of the GridPACK™ framework 

and the software modules contained within it. In combination with the Doxygen-based 

documentation on the GridPACK webpage, users and application developers should have a 

complete description of the framework components and how to use them. The applications area 

in the source code directory, as well as the GridPACK modules and components, provide 

additional examples of how GridPACK can be used to create power grid applications. However, 

if there are still questions on GridPACK, users should feel free to contact the GridPACK 

development team. 

  



2 
 

GridPACK™ License: Copyright (c) 2013, Battelle Memorial Institute All rights reserved. 

1. Battelle Memorial Institute (hereinafter Battelle) hereby grants permission to any person or 

entity lawfully obtaining a copy of this software and associated documentation files (hereinafter 

"the Software") to redistribute and use the Software in source and binary forms, with or without 

modification.  Such person or entity may use, copy, modify, merge, publish, distribute, 

sublicense, and/or sell copies of the Software, and may permit others to do so, subject to the 

following conditions: 

  * Redistributions of source code must retain the above copyright notice, this list of conditions 

and the following disclaimers.  

  * Redistributions in binary form must reproduce the above copyright notice, this list of 

conditions and the following disclaimer in the documentation and/or other materials provided 

with the distribution.  

  * Other than as used herein, neither the name Battelle Memorial Institute or Battelle may be 

used in any form whatsoever without the express written consent of Battelle.    

2.      THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, 

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 

DISCLAIMED. IN NO EVENT SHALL BATTELLE OR CONTRIBUTORS BE LIABLE FOR 

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 

OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 

3.      The Software was produced by Battelle under Contract No. DE-AC05-76RL01830 with the 

Department of Energy.  For five (5) years from October 10, 2013, the Government is granted for 

itself and others acting on its behalf a nonexclusive, paid-up, irrevocable worldwide license in 

this data to reproduce, prepare derivative works, and perform publicly and display publicly, by or 

on behalf of the Government.  There is provision for the possible extension of the term of this 

license.  Subsequent to that period or any extension granted, the Government is granted for itself 

and others acting on its behalf a nonexclusive, paid-up, irrevocable worldwide license in this data 

to reproduce, prepare derivative works, distribute copies to the public, perform publicly and 

display publicly, and to permit others to do  so.  The specific term of the license can be identified 

by inquiry made to Battelle or DOE.  Neither the United States nor the United States Department 

of Energy, nor any of their employees, makes any warranty, express or implied, or assumes any 



3 
 

legal liability or responsibility for the accuracy, completeness or usefulness of any data, 

apparatus, product or process disclosed, or represents that its use would not infringe privately 

owned rights. 

  



4 
 

Table of Contents 

 

How to read this document ...................................................................................................................... 6 

Introduction .............................................................................................................................................. 6 

Configuring and Building GridPACK .......................................................................................................... 8 

Building GridPACK Applications .............................................................................................................. 11 

GridPACK Framework Components ........................................................................................................ 13 

Network Module ................................................................................................................................. 16 

Math Module ...................................................................................................................................... 23 

Network Components ......................................................................................................................... 34 

Factories .............................................................................................................................................. 44 

Mapper Module .................................................................................................................................. 46 

Parser Module ..................................................................................................................................... 50 

Serial IO Module ................................................................................................................................. 51 

Configuration Module ......................................................................................................................... 55 

Developing Applications ......................................................................................................................... 57 

Advanced Functionality........................................................................................................................... 75 

Communicators ................................................................................................................................... 76 

Task Manager ...................................................................................................................................... 81 

Timers ................................................................................................................................................. 83 

Exceptions ........................................................................................................................................... 85 

Hash Distribution Module ................................................................................................................... 87 

String Utilities ...................................................................................................................................... 88 

Global Store ........................................................................................................................................ 89 

Bus Tables ........................................................................................................................................... 92 

Generalize Matrix-Vector Interface ........................................................................................................ 93 

Generalized Slab Mapper ........................................................................................................................ 99 

Optimization ........................................................................................................................................... 99 

Application Modules ............................................................................................................................. 104 

Power Flow ....................................................................................................................................... 104 

State Estimation Module .................................................................................................................. 108 

Dynamic Simulation Module using Full Y-Matrix .............................................................................. 111 



5 
 

Kalman Filter ..................................................................................................................................... 116 

GridPACK Examples ............................................................................................................................... 119 

“Hello World” .................................................................................................................................... 120 

Resistor Grid Application .................................................................................................................. 129 

Contingency Analysis ........................................................................................................................ 145 

Fortran 2003 Interface .......................................................................................................................... 155 

  



6 
 

How to read this document 
Depending on how you are planning on using GridPACK™, there are a variety of different ways of 

approaching the documentation. If you are only planning on using existing applications as is, without 

modification, then you should focus on the sections for configuring and building GridPACK and the 

application module documentation. Users that interested in developing their own applications may want 

to scan the section “Developing Applications” before going to the beginning of the document to learn 

about individual functionality in depth. The “GridPACK Examples” section contains additional examples 

of simple applications that can be used to get a sense of how to build an application from the ground up. 

The “Contingency Analysis” section provides some information on how to build applications that are 

based on the existing GridPACK application modules. Users that are interested in modifying the core 

functionality in GridPACK can look at the Doxygen documentation online under the “GridPACK API 

Documentation” link on www.gridpack.org, in addition to the documentation in this document. 

Introduction 

The objective of the GridPACK™ toolkit project is to provide a framework to support the rapid 

development of power grid applications capable of running on high performance computing 

architectures (HPC) with high levels of performance and scalability. The toolkit allows power 

system engineers to focus on developing working applications from their models without getting 

bogged down in the details of decomposing the computation across multiple processors, 

managing data transfers between processors, working out index transformations between power 

grid networks and the matrices generated by different power applications, and managing input 

and output. GridPACK is being designed to encapsulate as much of the book-keeping required to 

set up HPC applications as possible using high-level programming abstractions that allow 

developers to concentrate on the physics and mathematics of their problems. 

This document summarizes the overall design of the GridPACK framework and provides a 

detailed description of its components. The remainder of this document will describe the 

functionality incorporated into the GridPACK framework to support multiple power grid 

applications. The framework will continue to evolve as more real-world experience can be 

incorporated into the design process but many base classes that have already been identified that 

are capable of supporting a range of applications. 

During the initial stages of GridPACK development, four power grid applications were targeted 

for implementation. These included: 

1) Powerflow simulations of the electric grid 

2) Contingency analysis of the electric grid 

3) State estimation based on electric grid measurements 

4) Dynamic simulations of the electric grid 

From these applications, several cross-cutting functionalities were identified that could be used 

to support multiple applications. 

http://www.gridpack.org/


7 
 

1) Network topology and behavior. The network topology is the starting point for any power 

grid analysis. The topology defines the initial network model and is the connection point 

between the physical problem definition in terms of buses and branches and the solution 

method, which is usually expressed in terms of matrices and vectors. 

2) Network components and their properties (e.g. bus and branch models, measurements, 

etc.). Grid components are the objects associated with the buses and branches of the 

power grid network. Along with the network topology itself, these define the physical 

system being modeled and in some cases the analysis that is to be performed. Bus and 

branch components can be differentiated into things like generators, loads, grounds, lines, 

transformers, measurements, etc. and depending on the how they are defined and the 

level of detail incorporated into them, they define different power grid systems and 

analyses. The behavior of buses and branches can depend on the properties of branches or 

buses that are directly attached to them, e.g. figuring out the contribution of a particular 

bus to the solution procedure may require that properties of the attached branches are 

made available to the bus. The necessity for exchanging this data is built into the 

framework. Furthermore, these data exchanges must also be accounted for in a parallel 

computing context, since the grid component from which data is required may be located 

on a different processor. 

3) Linear algebra and solvers. Basic algebraic objects, such as distributed matrices and 

vectors, are a core part of the solution algorithms required by power grid analyses. Most 

solution algorithms are dominated by sparse matrices but a few, such as Kalman filter 

analyses, require dense matrices. Vectors are typically dense. There exists a rich set of 

libraries for constructing distributed matrices and vectors and these are coupled to 

preconditioner and solver libraries. GridPACK can leverage this work heavily by creating 

wrappers to these libraries that can be used in solution algorithms. Wrapping these 

libraries instead of using them directly will have the advantage that creating algebraic 

objects can be simplified somewhat for power grid applications but more importantly, it 

will allow framework developers to investigate new solver and algebraic libraries 

seamlessly, without disrupting other parts of the code. 

4) Mapping between network and algebraic objects. The physical properties of power grid 

systems are defined by networks and the properties of the network components but the 

equations describing the networks are algebraic in nature. The mappings between the 

physical networks and the algebraic equations depend on the indexing scheme used to 

describe the network and the number of parameters in the network components that 

appear in the equations. Constructing a map between network parameters and their 

corresponding locations in a matrix or vector can be complicated and error prone. 

Fortunately, much of this work can be automated and developers can focus more on 

developing code to evaluate individual matrix elements without worrying about where to 

locate them in the matrix. This can simplify coding considerably. 



8 
 

The elements described above have all been incorporated into GridPACK modules. More details 

about these modules and their interactions are provided in the remainder of this document. 

Configuring and Building GridPACK 
A note about CMake: The command for invoking CMake in this manual and the documentation 

in https://gridpack.org is usually of the form 

       cmake [OPTIONS] .. 

This particular form assumes that the build directory is below the directory that contains the top-

level CMakeLists.txt file for the build. For GridPACK, this is located in the src directory. 

If your build directory for GridPACK is below src and you invoke CMake from this directory, 

the “..” at the end of the cmake command is pointing to src. You could also use the absolute 

path to the src directory instead of “..” and this would work no matter where you locate the 

build directory. 

Building GridPACK requires several external libraries that must be built prior trying to configure 

and build GridPACK itself. On some systems, these libraries may already be available but in 

many cases, users will need to build them by hand. An exception is MPI, which is usually 

available on parallel platforms, although users interested in running parallel jobs on a multi-core 

workstation may still need to build it themselves. In any case, the best way to guarantee that all 

libraries are compatible with each other is to build them all using a consistent environment and 

set of compilers. There is extensive documentation on how to build GridPACK and the libraries 

on which it depends on the website located at https://gridpack.org. We refer to the information 

on the website for most of the details on how to build GridPACK and will only discuss some 

general properties of the configure procedure in this document. 

Example scripts for building the libraries used by GridPACK on different systems can be found 

under $GRIDPACK/src/scripts. In most cases these need to be modified slightly before 

they will work on your system, but the changes are usually small and self-evident. The scripts 

contain some additional documentation at the top to help you with these modifications. Find a 

script for a platform that is similar to your system and use this as the starting point for your build. 

GridPACK uses the CMake build system to create a set of make files that can then be used to 

compile the entire GridPACK framework. Most of the effort in building GridPACK is focused 

on getting the configure process to work, once configure has been successfully completed, 

compilation is usually straightforward. Builds of GridPACK should be done in their own 

directory and this also makes it possible to have multiple builds that use different configuration 

parameters associated with the same source tree. Typically, the build directories are under 

$GRIDPACK/src directory but they can be put anywhere the user chooses. The user then needs 

to run CMake from the build directory to configure GridPACK and then make and make 

install to compile and install the GridPACK libraries. After running make, all applications 

https://gridpack.org/
https://gridpack.org/


9 
 

in the GridPACK source tree are also available for use. The application executables will be 

located in the build directory and not in the source tree.  

GridPACK currently makes use of five different libraries. MPI and Global Arrays are used for 

communication, Boost provides several C++ extensions used throughout GridPACK, Parmetis is 

used to partition networks over multiple processors and PETSc provides parallel solvers and 

algebraic functionality. Except for MPI, which is usually available through compiler wrappers 

such as mpicc and mpicxx, the locations of the remaining libraries need to be specified in the 

CMake configure command. 

Because the cmake command takes a large number of arguments, it is usually a good idea to put 

the entire command in a script. The script can then be edited as needed. Make sure that the script 

is executable by running the chmod +x command on it. A typical CMake configure script is 

rm -rf CMake* 

 

cmake -Wdev \ 

      -D BOOST_ROOT:STRING='$HOME/software_new/boost_1_55_0' \ 

      -D PETSC_DIR:STRING='$HOME/software_new/petsc-3.6.0' \ 

      -D PETSC_ARCH:STRING='linux-openmpi-gnu-cxx' \ 

      -D PARMETIS_DIR:STRING= \ 

        '$HOME/software_new/petsc-3.6.0/linux-openmpi-gnu-cxx/lib' \ 

      -D GA_DIR:STRING='$HOME/software_new/ga-5-4-ib' \ 

      -D USE_PROGRESS_RANKS:BOOL=FALSE \ 

      -D GA_EXTRA_LIBS='-lrt -libverbs' \ 

      -D MPI_CXX_COMPILER:STRING='mpicxx' \ 

      -D MPI_C_COMPILER:STRING='mpicc' \ 

      -D MPIEXEC:STRING='mpiexec' \ 

      -D CMAKE_INSTALL_PREFIX:PATH='$GRIDPACK/src/build/install' \ 

      -D CMAKE_BUILD_TYPE:STRING='RELWITHDEBINFO' \ 

      -D MPIEXEC_MAX_NUMPROCS:STRING="2" \ 

      -D CMAKE_VERBOSE_MAKEFILE:STRING=TRUE \ 

      .. 

The first line removes any configuration files that may be left over from a previous configuration 

attempt. Removing these files is generally a good idea since parameters from a previous 

unsuccessful attempt may bleed over into the current configuration and either spoil the 

configuration itself or lead to problems when you try to compile the code. The Boost, PETSc, 

Parmetis and Global Array library locations are specified by the BOOST_ROOT, PETSC_DIR, 

PARMETIS_DIR and GA_DIR variables. The PETSC_ARCH variable specifies the particular 

build within PETSc that you want GridPACK to use. It is usually possible when configuring and 



10 
 

building PETSc to have it download and build Parmetis as well. This was done in the example 

above and thus the Parmetis libraries are located within the PETSc source tree in the directory 

corresponding to the architecture specified in PETSC_ARCH. 

The Global Arrays library can be built using a number of different runtimes. The default runtime 

uses MPI two-sided communication. While it is very easy to use, this runtime does not scale well 

beyond a dozen or so processors. Users interested on running on large numbers of cores should 

look at configuring Global Arrays with other runtimes. A high performing GA runtime that is 

available on most platforms is called progress ranks. This runtime has a peculiarity in that it 

reserves one MPI process per SMP node to manage communication. Thus, if you request a total 

of 20 MPI processes on 4 nodes with 5 processes running on each node only 4 MPI process per 

node will actually be available to the application for a total of 16. In order to notify GridPACK 

that you are using this runtime, you need to set the parameter USE_PROGRESS_RANKS to true. 

In the example above, we are not using progress ranks so we set USE_PROGRESS_RANKS to 

false. 

The GA_EXTRA_LIBS parameter can be used to include extra libraries in the link step that are 

not picked up as part of the configuration process. In this example, GA is configured to run on an 

Infiniband network so it is necessary to explicitly include libibverbs and librt. For most 

of the MPI-based runtimes, this variable is not needed. 

The MPI wrappers for the C and C++ compilers can be specified by setting MPI_C_COMPILER 

and MPI_CXX_COMPILER and the MPI launch command can be specified using MPIEXEC. 

The CMAKE_INSTALL_PREFIX specifies the location of the installed build of GridPACK. 

This location should be used when linking external applications to GridPACK. The 

CMAKE_BUILD_TYPE can be used to control the level of debugging symbols in the library. 

MPIEXEC_NUM_PROCS should be set to a small number and controls the number of processors 

that will be used if running the parallel tests in the GridPACK test suite. Many of the application 

tests are small (9 or 14 buses) and will fail if you try and run on a large number of cores. Finally, 

CMAKE_VERBOSE_MAKEFILE controls the level of information generated during the 

compilation. It is mainly of interest for people doing development in GridPACK and most other 

users can safely set it to false. 

The final argument of the cmake command is the location of the top level CMakeLists.txt 

file in the source tree. For GridPACK, this file is located in the $GRIDPACK/src directory. 

The above example assumes that the build directory is located directly under $GRIDPACK/src 

so the .. at the end of the configure script is pointing to the directory containing the 

CMakeLists.txt file. 



11 
 

Once the GridPACK framework has been built, applications and framework tests can be run 

using standard MPI scripts for running jobs. A typical invocation to run a code code.x on some 

number of processors is 

mpirun -n 2 code.x 

In this case the code will run on 2 processors. Different platforms may use different scripts to run 

the parallel job. Consult your local system documentation for details. Applications may also have 

additional arguments that are processed inside the application itself. Most GridPACK 

applications will take an argument representing the input file for the application. 

Building GridPACK Applications 
GridPACK comes with several applications that are included in the main distribution. These 

currently include power flow, contingency analysis, dynamic simulation, state estimation and 

Kalman filter applications as well as some non-power grid examples that illustrate features of the 

framework. These applications are automatically built whenever the full GridPACK distribution 

is built.  

For applications developed outside the GridPACK distribution, the build process is fairly simple, 

provided you are using CMake (you will need to have CMake installed on your system to build 

GridPACK so using CMake for your application build should be a straightforward extension). 

For a CMake build, you need to create a CMakeLists.txt file in the same directory that includes 

your application files. A template for the CMakeLists.txt file is 

 1 cmake_minimum_required(VERSION 2.6.4) 

 2 

 3 if (NOT GRIDPACK_DIR) 

 4   set(GRIDPACK_DIR /HOME/gridpack-install 

 5       CACHE PATH "GridPACK installation directory") 

 6 endif() 

 7 

 8 include("${GRIDPACK_DIR}/lib/GridPACK.cmake") 

 9 

10 project(MyProject) 

11 

12 enable_language(CXX) 

13 

14 gridpack_setup() 

15 

16 add_definitions(${GRIDPACK_DEFINITIONS}) 

17 include_directories(BEFORE ${CMAKE_CURRENT_SOURCE_DIR}) 

18 include_directories(BEFORE ${GRIDPACK_INCLUDE_DIRS}) 



12 
 

19 

20 add_executable(myapp.x 

21   myapp_main.cpp 

22   mayapp_driver.cpp 

23   myapp_file1.cpp 

24   myapp_file2.cpp 

25 ) 

26 target_link_libraries(myapp.x ${GRIDPACK_LIBS}) 

27  

28 add_custom_target(myapp.input 

29  

30   COMMAND ${CMAKE_COMMAND} -E copy  

31   ${CMAKE_CURRENT_SOURCE_DIR}/input.xml 

32   ${CMAKE_CURRENT_BINARY_DIR} 

33 

34   COMMAND ${CMAKE_COMMAND} -E copy  

35   ${CMAKE_CURRENT_SOURCE_DIR}/myapp_test.raw 

36   ${CMAKE_CURRENT_BINARY_DIR} 

37 

38   DEPENDS  

39   ${CMAKE_CURRENT_SOURCE_DIR}/input.xml 

40   ${CMAKE_CURRENT_SOURCE_DIR}/myapp_test.raw 

41 ) 

42 add_dependencies(myapp.x myapp.input) 

Lines 1-6 check to see if the CMake installation is recent enough and also make sure that the 

GRIDPACK_DIR variable has been defined in the configuration step. If it hasn’t, then the 

CMake will try and use a default value and look for a build in $HOME/gridpack-install. 

However, this is unlikely to be successful, so it is better to define GRIDPACK_DIR when 

configuring your application. Line 8 picks up a file that is used by the application build to link to 

libraries and header files in the GridPACK build and line 10 can be used to assign a name to 

your application. Lines 12-18 can be included as is, if all application files are in the same 

directory as the CMakeLists.txt file. If other directories contain source and header files, then they 

can be included using the directives in lines 17 and 18. 

Lines 20-25 define the name of the executable and all the source code files that are used in the 

application. The add_executable command on line 26 adds the executable myapp.x to the 

build. The arguments to this command consist of the name of the executable followed by the 

executable source files. There can be an arbitrary number of source files associated with any one 

executable. Note that the source files just consist of the user application source files, the 



13 
 

framework files are handled automatically. If some of the files are located in subdirectories, then 

the path relative to the directory where the CMakeLists.txt file is located should be included. 

The remaining lines 28-42 are optional and can be used to automatically copy files from the 

application source file directory to the build directory. These could include example input files or 

external configuration files that are called by the code to set internal parameters. The 

add_custom_target command on line 28 defines a list of files and what should be done 

with them. In this example, the two files input.xml and myapp_test.raw are the files to 

be copied. The COMMAND line specifies the action (copy) and the next two lines specify the 

location of the file to be copied and its destination. The DEPENDS keyword (line 38) indicates 

that any time the input.xml or myapp_test.raw files are modified, they should be 

recopied to the build directory if make is invoked and the add_dependencies command 

(line 42) binds the custom target to the build of the executable. 

A template file for CMakeLists.txt can be found in the src directory under 

CMakeLists.template.txt. Users should copy this file to their application directory, 

modify the name to CMakeLists.txt and add their own source files and test input. 

GridPACK Framework Components 
This section will describe the GridPACK components and the functionality they support. The 

four major GridPACK components are networks, bus and branch components, the mappers and 

the math module. The math module is relatively self-contained and can be used as a conventional 

library, but the other three are tightly coupled and need to be used together to do anything useful. 

A schematic that illustrates the relationship between these components is show in Figure 1. 



14 
 

 

Figure 1. Relationship between major GridPACK components. 

A full description of a power grid network requires specification of both the network topology 

and the physical properties of the bus and branch components. The combination of the models 

and the network generate algebraic equations that can be solved to get desired system properties. 

GridPACK supplies numerous modules to simplify the process of specifying the model and 

solving it. These include power grid components that describe the physics of the different 

network models or analyses, grid component factories that initialize the grid components, 

mappers that convert the current state of the grid components into matrices and vectors, solvers 

that supply the preconditioner and solver functionality necessary to implement solution 

algorithms, input and output modules that allow developers to import and export data, and other 

utility modules that support standard code develop operations like timing, event logging, and 

error handling. 

Many of these modules are constructed using libraries developed elsewhere so as to minimize 

framework development time. However, by wrapping them in interfaces geared towards power 

grid applications these libraries can be made easier to use by power grid engineers. The 

interfaces also make it possible in the future to exchange libraries for new or improved 

implementations of specific functionality without requiring application developers to rewrite 

their codes. This can significantly reduce the cost of introducing new technology into the 

framework. The software layers in the GridPACK framework are shown schematically in Figure 

2. 



15 
 

       

Figure 2. A schematic diagram of the GridPACK framework software data stack. Green 

represents components supplied by the framework and blue represents code that is developed by 

the user. 

Core framework components are described below. Before discussing the components 

themselves, some of the coding conventions and libraries used in GridPACK will be described. 

Preliminaries: The GridPACK software uses a few coding conventions to help improve memory 

management and to minimize run-time errors. The first of these is to employ namespaces for all 

GridPACK modules. The entire GridPACK framework uses the gridpack namespace, 

individual modules within GridPACK are further delimited by their own namespaces. For 

example, the BaseNetwork class discussed in the next section resides in the 

gridpack::network namespace and other modules have similar delineations. The example 

applications included in the source code also have their own namespaces, but this is not a 

requirement for developing GridPACK-based applications. 

To help with memory management, many GridPACK functions return boost shared pointers 

instead of conventional C++ pointers. These can be converted to a conventional pointer using the 

get() command. We also recommend that the type of pointers be converted using a 

dynamic_cast instead of conventional C-style cast. 



16 
 

Application files should include the gridpack.hpp header file. This can be done by adding 

the line 

#include “gridpack/include/gridpack.hpp” 

at the top of the application .hpp and/or .cpp files. This file contains definitions of all the 

GridPACK modules and their associated functions. 

Matrices and vectors in GridPACK were originally complex but now either complex or real 

matrices can be created using the library. Inside the GridPACK implementation, the underlying 

distributed matrices are either complex or real, but the framework adds a layer that supports both 

types of objects, even if the underlying math library does not. However, computations on 

complex matrices will perform better if the underlying math library is configured to use complex 

matrices directly. This should be kept in mind when choosing the math library to build 

GridPACK on. The underlying PETSc library can be configured to support either real or 

complex matrices. Complex numbers are represented in GridPACK as having type 

ComplexType. The real and imaginary parts of a complex number x can be obtained using the 

functions real(x) and imag(x). 

Network Module 

The network module is designed to represent the power grid and has four major functions 

1) The network is a container for the grid topology. The connectivity of the network is 

maintained by the network object and can be made available through requests to the 

network. The network also maintains the “ghost” status of buses and branches and 

determines whether a bus or branch is owned by a particular processor or represents a 

ghost image of a bus or branch owned by a neighboring processor. 

2) The network topology can be decorated with bus and branch objects that describe the 

properties of the particular physical system under investigation. Bus and branch objects 

are written by the application developer and incorporate the grid model and the analyses 

that need to be performed on it. Different applications will use different bus and branch 

implementations. 

3) The network module is responsible for supplying update operations that can be used to 

fill in the value of ghost cell fields with current data from other processors. The updates 

of ghost buses and ghost branches have been split into separate operations to give users 

flexibility in optimizing performance by minimizing the amount of data that needs to be 

communicated in the code. Many applications do not require exchanges of branch data. 

4) The network contains the partitioner. The partitioner is embedded in the network module 

but it is a substantial computational technology in its own right. Partitioning is a key part 

of parallel application development. It represents the act of dividing up the problem so 

that each processor is left with approximately equal amounts of work. At the same time, 



17 
 

the partition is chosen so that communication between processors (a major source of 

computational inefficiency in HPC programs) is minimized.  

A network is illustrated schematically in Figure 3. Each bus and branch has an associated bus or 

branch object. The buses and branches are derived from base classes that specify certain 

functions that must be implemented by the application developer so that the network can interact 

with other GridPACK modules. In addition, the application can have functionality outside the 

base class that is unique to the particular application. 

           

Figure 3. Schematic representation of a GridPACK network. The squares are branch objects and 

the circles are bus objects. Framework-specified interfaces are green and user supplied 

functionality is blue. 

A major use of the partitioner is to rearrange the network in a form that is useful for computation 

immediately after it is read in from an external file. Typically, the information in the external file 

is not organized in a way that is necessarily optimal for computation, so the partitioner must 

redistribute data such that each processor contains at most a few large connected subsets of the 

network. The partitioner is also responsible for adding the ghost buses and branches to the 

system. 

Ghost buses and branches in a parallel program represent images of buses and branches that are 

owned by other processes. In order to carry out operations on buses and branches it is frequently 

necessary to gain access to data associated with attached buses and branches. The most efficient 

way to do this is to create copies of the buses and branches from other processors that are 



18 
 

connected to locally owned objects. All local network components then have a complete set of 

attached neighbors. The ghost objects are updated collectively with current information from 

their home processors at points in the computation. Updating all ghosts at once is almost always 

more efficient than accessing data from one remote bus or branch at a time. 

The use of the partitioner to distribute the network between different processors and create ghost 

nodes and branches is illustrated in Figure 4. Figure 4(a) shows a simple network and Figures 

4(b) and 4(c) show the result of distributing the network between two processors. 

 



19 
 

 

 

Figure 4. (a) a simple network (b) partition of network on processor 0 (b) partition of network on 

processor 1. Open circles indicate ghost buses and dotted lines indicate ghost branches. 

Networks can be created using the templated base class BaseNetwork<class Bus, 

class Branch>, where Bus and Branch are application-specific classes describing the 

properties of buses and branches in the network. The BaseNetwork class is defined within the 

gridpack::network namespace. In addition to the Bus and Branch classes, each bus and 

branch has an associated DataCollection object, which is described in more detail in the 



20 
 

network components section. The DataCollection object is a collection of key-value pairs 

that acts as an intermediary between data that is read in from external configuration files and the 

bus and branch classes that define the network. 

The BaseNetwork class contains a large number of methods, but only a relatively small 

number will be of interest to application developers. The remaining methods are used primarily 

within other GridPACK modules to implement higher level capabilities. This document will 

focus on calls that are likely to be used by application developers. 

The constructor for the network class is the function 

BaseNetwork(const parallel::Communicator &comm) 

The Communicator object is used to define the set of processors over which the network is 

distributed. Communicators are discussed in more detail below. The network constructor creates 

an empty shell that does not contain any information about an actual network. The remainder of 

the network must be built up by adding buses and branches to it. Typically, buses and branches 

are added by passing the network to a parser (see import module) which will create an initial 

version of the network. The constructor is paired with a corresponding destructor 

~BaseNetwork() 

that is called when the network object passes out of scope or is explicitly deleted by the user. 

Two functions are available that return the number of buses or branches that are available on a 

process. This number includes both buses and branches that are held locally as well as any ghosts 

that may be located on the process. 

int numBuses() 

 

int numBranches() 

There are also functions that will return the total number of buses or branches in the network. 

These numbers ignore ghost buses and ghost branches. 

int totalBuses() 

 

int totalBranches() 

Buses and branches in the network can be identified using a local index that runs from 0 to the 

number of buses or branches on the process minus 1 (0-based indexing). For some calculations, 

it is necessary to identify one bus in the network as a reference bus. This bus is usually set when 

the network is created using an import parser. It can subsequently be identified using the function 

int getReferenceBus() 



21 
 

If the reference bus is located on this processor (either as a local bus or a ghost) then this 

function returns the local index of the bus, otherwise it returns -1. 

Ghost buses and branches are distinguished from locally owned buses and branches based on 

whether or not they are “active”. The two functions 

bool getActiveBus(int idx) 

 

bool getActiveBranch(int idx) 

provide the active status of a bus or branch on a process. The index idx is a local index for the 

bus or branch. 

Buses and branches are characterized by a number of different indices. One is the local index, 

already discussed above, but there are several others. Most of these are used internally by other 

parts of the framework but one index is of interest to application developers. This is the 

“original” bus index. When the network is described in the input file, the buses are labeled with a 

(usually) positive integer. There or no requirements that these integers be consecutive, only that 

each bus has its own unique index. The value of this index can be recovered using the function 

int getOriginalBusIndex(int idx) 

The variable idx is the local index of the bus. Branches are usually described in terms of the 

original bus indices for the two buses at each end of the branch, so there is no corresponding 

function for branches. Instead, the procedure is to get the local indices of the two buses at each 

end of the branch and then get the corresponding original indices of the buses. This information 

is usually used for output. 

It is frequently necessary to gain access to the objects associated with each bus or branch. The 

following four methods can be used to access these objects 

boost::shared_ptr<Bus> getBus(int idx) 

 

boost::shared_ptr<Branch> getBranch(int idx) 

 

boost::shared_ptr<DataCollection> getBusData(int idx) 

 

boost::shared_ptr<DataCollection> getBranchData(int idx) 

The first two methods can be used to get Boost shared pointers to individual bus or branch 

objects indexed by local indices idx. The second two functions return pointers to the 

DataCollection objects associated with each bus or branch. These DataCollection 

objects can be used to initialize the bus and branch objects at the start of a calculation but they 



22 
 

are also useful when converting a network of one type to a network of another type. This often 

happens when different computations are chained together. 

The following functions can be useful for handling input that is directed at certain network 

components 

std::vector<int> getLocalBusIndices(int idx) 

std::vector<int> getLocalBranchIndices(int idx1, int idx2) 

These functions return a list of local indices that correspond to either the original bus index idx 

for a bus, or the pair of indices idx1, idx2 for a branch. The reason that a list is returned 

instead of a single index is that in the case of ghost buses and branches, more than one copy of a 

network component may exist on a process. If no copies of a network component exist on a 

process then the returned vector has zero length. These functions can be used for applications 

such as contingency analysis, where modifications are made to a single network component and 

the modifications are specified in terms of the original bus indices. These functions can be used 

to find the local index of the component, if it exists.  

The network partitioner can be accessed via the function 

void partition() 

The partition function distributes the buses and branches across processers such that the 

connectivity to branches and buses on other processors is minimized. It is also responsible for 

adding ghost buses and branches to the network. This function should be called after the network 

is read in but before any other operations, such as setting up exchange buffers or creating 

neighbor lists, have been performed. 

Finally, two sets of functions are required in order to set up and execute data exchanges between 

buses and branches in a distributed network. These exchanges are used to move data from active 

components to ghost components residing on other processors. Before these functions can be 

called, the buffers in individual network components must be allocated. See the documentation 

below on network components and the network factory for more information on how to do this. 

Once the buffers are in place, bus and branch exchanges can be set up and executed with just a 

few calls. The functions 

void initBusUpdate() 

 

void initBranchUpdate() 

are used to initialize the data structures inside the network object that manage data exchanges. 

Exchanges between buses and branches are handled separately, since not all applications will 

require exchanges between both sets of objects. The initialization routines are relatively complex 



23 
 

and allocate several large internal data structures, so they should not be called if there is no need 

to exchange data as part of the algorithm. 

After the updates have been initialized, it is possible to execute a data exchange at any point in 

the code by calling the functions 

void updateBuses() 

 

void updateBranches() 

These functions will cause data on ghost buses and branches to be updated with current values 

from active buses and branches located on other processors. 

One additional network function that can be useful in certain circumstances is the capability for 

recovering the communicator on which the network is defined 

const Communicator& communicator() const 

This function can be used in implementing algorithms based on multilevel parallelism. 

Recovering the communicator is also needed for converting applications to modules that can be 

used to create higher level workflows that combine multiple different types of applications. This 

is discussed in more detail below. 

The BaseNetwork methods described in this section are only a subset of the total functionality 

available but they represent most of the methods that a typical developer would use. The 

remaining functions are primarily used to implement other parts of the GridPACK framework 

but are generally not required by people writing applications. More information on how the 

functions described above are used in practice can be found in the section on GridPACK 

factories. 

Math Module 

The math module provides support in GridPACK for distributed matrices and vectors, linear 

solvers, non-linear solvers, and preconditioners. Once created, matrices can be treated as opaque 

objects and manipulated using a high level syntax that is comparable to writing Matlab code. The 

distributed matrix and vector data structures themselves are based on external solver libraries and 

represent relatively lightweight wrappers on multipurpose HPC codes. The current math module 

is built on the PETSc library but other libraries, such as Hypre and Trilinos could potentially be 

used instead. 

The main functionality associated with the math module is the ability to instantiate new matrices 

and vectors, add individual matrix and vector elements (and their values) to the matrix/vector 

objects, invoke the assemble operation on the object, perform basic algebraic operations, such as 

matrix-vector multiply, and solve systems of algebraic equations. The assemble operation is 

designed to give the library a chance to set up internal data structures and repartition the matrix 



24 
 

elements, etc. in a way that will optimize subsequent calculations. Inclusion of this operation 

follows the syntax of most solver libraries when they construct a matrix or vector.  

In addition to basic matrix operations, the math module contains linear and non-linear solvers 

and preconditioners. The module provides a simple interface on top of the PETSc libraries that 

will allow users access to this functionality without having to be familiar with the libraries 

themselves. This should make it possible to construct solver routines that are comparable in 

complexity to Matlab scripts. The use of a wrapper instead of having users directly access the 

libraries will also make it simpler to switch the underlying library in an application. All that will 

be required is that developers link to an implementation of the math module interface that is built 

on a different library. There will not be a need to rewrite any application code. This has the 

advantage that if a different library is used for the math module in one application, it instantly 

becomes available for other applications. 

The functionality in the math component is distributed between the classes Matrix, 

RealMatrix, Vector, RealVector, LinearSolver, RealLinearSolver, 

NonlinearSolver and RealNonlinearSolver. Each of these classes is in the 

gridpack::math namespace and is described below. Like the BaseNetwork class, there 

are a lot of functions in Matrix and Vector that do not need to be used by users. Most of the 

functions related to matrix/vector instantiation and creation are used inside the mapper classes 

described below, which eliminates the need for users to deal with them directly. However, users 

may be interested in creating functions not covered by existing library methods and in this case 

access to these functions is useful. 

An additional note on the math module class names is in order. Originally, GridPACK only 

supported complex objects and used the names Vector, Matrix, etc. More recently, the 

capability for supporting real objects was added and hence the new names RealVector, etc. 

The original names continued to be used for complex objects to maintain backwards 

compatibility. Complex objects can also be accessed using the names ComplexVector, 

ComplexMatrix, etc., which are mapped to the original complex objects. 

Matrices 

The Matrix and RealMatrix classes are designed to create distributed matrices. Matrix 

is used for complex matrices and RealMatrix is used for real matrices. The matrix classes 

support two types of matrix, Dense and Sparse. In most cases users will want to use the 

sparse matrix but some applications require dense matrices. The Matrix and RealMatrix 

classes are nearly identical in functionality, so in the following we will only outline operations 

on the Matrix class. In most cases, the RealMatrix class contains the same operations. The 

only point to note is that for any operations that involve multiple matrices or a matrix and a 

vector, all matrix and vector objects must be either all complex or all real. In the future, we plan 

on adding some operations that will allow users to convert between types. 



25 
 

The matrix constructor is 

Matrix(const parallel::Communicator &comm, 

           const int &local_rows, 

           const int &cols, 

           const StorageType &storage_type=Sparse) 

The communicator object comm specifies the set of processors that the matrix is defined on, the 

local_rows parameter corresponds to the number of rows contributed to the matrix by the 

processor, the cols parameter indicates what the second dimension of the matrix is and the 

storage_type parameter determines whether the matrix is sparse or dense. If the total 

dimension of the matrix is M×N, then the sum of the local_rows parameters over all 

processors must equal M and the cols parameter is equal to N. The matrix destructor is 

~Matrix() 

Once a matrix has been created some inquiry functions can be used to probe the matrix size and 

distribution. The following functions return information about the matrix. 

int rows() const 

 

int localRows() const 

 

void localRowRange(int &lo, int &hi) const 

 

int cols() 

The function rows will return the total number of rows in the matrix, localRows returns the 

number of rows associated with the calling processor, localRowRange returns the lo and hi 

index of the rows associated with the calling processor and cols returns the number of columns 

in the matrix. Note that matrices are partitioned into row blocks on each processor. 

Additional functions can be used to add matrix elements to the matrix, either one at a time or in 

blocks. The following two calls can be used to reset existing elements or insert new ones. 

void setElement(const int &i, const int &j, 

                const ComplexType &x) 

 

void setElements(const int &n, const int *i, const int *j, 

                 const ComplexType *x) 

For real matrices, all variables of type ComplexType should be switched to type double. The 

first function will set the matrix element at the index location (i,j) to the value x. If the 



26 
 

matrix element already exists, this function overwrites the value, if the element is not already 

part of the matrix, it gets added with the value x. Note that both i and j are zero-based indices. 

For the current PETSc based implementation of the math module, it is not required that the index 

i lie between the values of lo and hi obtained with localRowRange function, but for 

performance reasons it is desirable. Other implementations may require that i lie in this range. 

The second function can be used to add a collection of elements all at once. The variable n is the 

number of elements to be added, the arrays i and j contain the row and column indices of the 

matrix elements and the array x contains their values. Again, it is preferable that all values in i 

lie within the range [lo,hi]. 

Two functions that are similar to the set element functions above are the functions 

void addElement(const int &i, const int &j, 

                const ComplexType &x) 

 

void addElements(const int &n, const int *i, const int *j, 

                 const ComplexType *x) 

 

These differ from the set element functions only in that instead of overwriting the new values 

into the matrix, these functions will add the new values to whatever is already there. If no value 

is present in the matrix at that location the function inserts it. 

In addition to setting or adding new elements, it is possible to retrieve matrix values using the 

functions 

void getElement(const int &i, const int &j, 

                ComplexType &x) const 

 

void getElements(const int &n, const int *i, const int *j, 

                 ComplexType *x) const 

These functions can only access elements that are local to the processor. This means that the 

index i must lie in the range [lo,hi] returned by the function localRowRange. 

Finally, before a matrix can be used in computations, it must be assembled and internal data 

structures must be set up. This can be accomplished by calling the function 

void ready() 

After this function has been invoked, the matrix is read for use and can be used in computations. 

In general, the procedure for building a matrix is 1) create the matrix object 2) determine local 



27 
 

parameters such as lo and hi 3) set or add matrix elements and 4) assemble the matrix using the 

ready function. For most applications, users can avoid these operations by building matrices 

and vectors using the mapper functionality described below. 

Some additional functions have been included in the matrix class that can be useful for creating 

matrices or writing out their values (e.g. for debugging purposes). It is often useful to create a 

copy of a matrix. This can be done using the clone method 

Matrix* clone() const 

The new matrix is an exact replica of the matrix that invokes this function. 

Two functions that can be used to write the contents of a matrix, either to standard output or to a 

file are 

void print (const char *filename=NULL) const 

void save(const char *filename) const 

The first function will write the contents of the matrix to standard output if no filename is 

specified, otherwise it writes to the specified file, the second function will write a file in 

MatLAB format. These functions can be used for debugging or to create matrices that can be fed 

into other programs. 

Once a matrix has been created, a variety of methods can be applied to it. Most of these are 

applied after the ready call has been made by the matrix, but some operations can be used to 

actually build a matrix. These functions are listed below. 

void equate(const Matrix &A) 

This function sets the calling matrix equal to matrix A. 

void scale(const ComplexType &x) 

Multiply all matrix elements by the value x (use a value of type double for a real matrix). 

void multiplyDiagonal(const Vector &x) 

Multiply all elements on the diagonal of the calling matrix by the corresponding element of the 

vector x. The Vector class is described below. 

void addDiagonal(const Vector &x) 

Add elements of the vector x to the diagonal elements of the calling matrix. 

void add(const Matrix &A) 



28 
 

Add the matrix A to the calling matrix. The two matrices must have the same number of rows 

and columns, but otherwise there are no restrictions on the data layout or the number and 

location of the non-zero entries. 

void identity() 

Create an identity matrix. This function assumes that the calling matrix has been created but no 

matrix elements have been assigned to it. 

void zero() 

Set all non-zero entries to zero. 

void conjugate(void) 

Set all entries to their complex conjugate value. This function only applies to complex matrices. 

The following functions create a new matrix or vector. 

Matrix *multiply(const Matrix &A, const Matrix& B) 

Multiply matrix A times matrix B to create a new matrix. 

Vector *multiply(const Matrix &A, const Vector &x) 

Multiply matrix A times vector x to get a new vector. 

Matrix *transpose(const Matrix &A) 

Take the transpose of matrix A. 

Vectors 

The vector class operates in much the same way as the matrix class. As above, most functions 

apply to both the Vector and RealVector class so only the Vector operations are 

described here. The vector constructor is 

Vector(const parallel::Communicator& comm, const int& local_length) 

The parameter local_length is the number of contiguous elements in the vector that are held 

on the calling processor. The sum of local_length over all processors must equal the total 

length of the vector. The functions 

int size(void) const 

int localSize(void) const 

void localIndexRange(int &lo, int &hi) const 



29 
 

can by used to get the global size of the vector or the size of the vector segment held locally on 

the calling processor. The localIndexRange function can be used to find the indices of the 

vector elements that are held locally. 

Vector elements can be set and accessed using the functions 

void setElement(const int &i, const ComplexType &x) 

void setElementRange(const int& lo, const int &hi, ComplexType *x) 

void setElements(const int &n, const int *i, const ComplexType *x) 

void addElement(const int &i, const ComplexType &x) 

void addElements(const int& n, const int *i, const ComplexType *x) 

void getElement(const int& i, ComplexType& x) const 

void getElements(const int& n, const int *i, ComplexType *x) const 

void getElementRange(const int& lo, const int& hi, 

                     ComplexType *x) const 

void ready(void) 

These functions all operate in a similar way to the corresponding matrix operations. The 

setElementRange function, etc. are similar to the setElements function except that 

instead of specifying individual element indices in a separate vector, the low and high indices of 

the segment to which the values are assigned is specified (this assumes that the values in the 

array x represent a contiguous segment of the vector).  Again, for real vectors, all values of type 

ComplexType should be replaced by values of type double. The utility functions 

Vector *clone(void) const 

void print(const char* filename = NULL) const 

void save(const char *filename) const 

also have similar behaviors to their matrix counterparts. 

Additional operations that can be performed on the entire vector include 

void zero(void) 

void equate(const Vector &x) 

void fill(const ComplexType& v) 

ComplexType norm1(void) const 

ComplexType norm2(void) const 

ComplexType normInfinity(void) const 

void scale(const ComplexType& x) 

void add(const ComplexType& x) 

void add(const Vector& x, const ComplexType& scale = 1.0) 

void elementMultiply(const Vector& x) 



30 
 

void elementDivide(const Vector& x) 

 

The zero function sets all vector elements to zero, the equate function copies all values of the 

vector x to the corresponding elements of the calling vector, fill sets all elements to the value 

v, norm1 returns the L1 norm of the vector, norm2 returns the L2 norm and normInfinity 

returns the L∞ norm. The scale function can be used to multiply all vector elements by the 

value x, the first add function can be used to add the constant x to all vector elements and the 

second add function can be used to add the vector x to the calling vector after first multiplying 

it by the value scale. The final two functions multiply or divide each element of the calling 

vector by the value in the vector x. 

The following methods modify the values of the vector elements using some function of the 

element value. 

void abs(void) 

void real(void) 

void imaginary(void) 

void conjugate(void) 

void exp(void) 

void reciprocal(void) 

The function abs replaces each element with its complex norm (absolute value), real and 

imaginary replace the elements with their real or imaginary values, conjugate replaces the 

vector elements with their conjugate values, exp replaces each vector element with the 

exponential of its original value and reciprocal replaces each element by its reciprocal. The 

real, imaginary and conjugate functions only apply to complex vectors. 

Linear Solvers 

The math module also contains solvers. The LinearSolver class contains a constructor 

LinearSolver(const Matrix &A) 

that creates an instance of the solver. The matrix A defines the set of linear equations Ax=b that 

must be solved. If matrix A is a RealMatrix then the corresponding class and its constructor is 

RealLinearSolver(const RealMatrix &A) 

The properties of the solver can be modified by calling the function 

void configure(utility::Configuration::Cursor *props) 



31 
 

The Configuration module is described in more detail below. This function can be used to 

pass information from the input file to the solver to alter its properties. For the PETSc library, the 

solver algorithm can be controlled using PETSc’s runtime options database. Different options 

can be passed to PETSc by including a block in the input deck (there is more documentation on 

input decks in the section on the Configuration module). An example of this type of input is 

<LinearSolver> 

  <PETScOptions> 

    -ksp_view 

    -ksp_type richardson 

    -pc_type lu 

    -pc_factor_mat_solver_package superlu_dist 

    -ksp_max_it 1 

  </PETScOptions> 

</LinearSolver> 

The LinearSolver block is where different solver parameters are defined and the 

PETScOptions block is where a string can be passed to the runtime options database. 

Additional parameters that can be passed to the solver include SolutionTolerance, 

MaxIterations and FunctionTolerance. Some solvers that are available in PETSc only 

run serially and will fail if run on more than one processor. However, for the problem size ranges 

frequently encountered in power grid analysis, the serial solvers may be the fastest options. Other 

parts of the code may be more scalable so it is desirable to run them in parallel. GridPACK has 

options that allow users to run the code in parallel while using a serial solver, without the need to 

modify any application source code. This can be done by including the options 

<ForceSerial>true</ForceSerial> 

<InitialGuessZero>true</InitialGuessZero> 

<SerialMatrixConstant>true</SerialMatrixConstant> 

in the LinearSolver block. The first option can be used to replicate the linear solver across all 

processors in the system and then distribute the answer to processors. The second option 

eliminates the need for obtaining an initial guess for the solution from all processors and 

provides additional performance gains. The final option can be used if the matrix does not 

change between function calls. Only new versions of the RHS vector need to be replicated on 

each processor after the first call. This can also result in performance gains. 

After configuring the solver, it can be used to solve the set of linear equations by calling the 

method 

void solve(const Vector &b, Vector &x) const 



32 
 

This function returns the solution x based on the right hand side vector b. 

Non-linear Solvers 

The math module also supports non-linear solvers for systems of the type A(x)∙x = b(x) but 

the interface is more complicated than for the linear solvers. In order for the non-linear solver to 

work, two functions must be defined by the user. The first evaluates the Jacobian of the system 

for a given trial state x of the system and the second computes the right hand side vector for a 

given trial state x. The two functions are of type JacobianBuilder and 

FunctionBuilder. The JacobianBuilder function is a function with arguments 

    (const math::Vector &vec, math::Matrix &jacobian) 

and FunctionBuilder is a function with arguments 

    (const math::Vector &xCurrent, math::Vector &newRHS) 

These functions need to be added to the system somewhere. They can then be assigned to objects 

of type JacobianBuilder and FunctionBuilder and passed to the constructor of the 

non-linear solver. There are a number of ways to do this. In the following discussion, we will 

adopt the method used in the non-linear solver version of the power flow code that is distributed 

with GridPACK. 

The first step is to define a struct that can be used to implement the functions needed by the non-

linear solver (the actual implementation contains additional declarations and code, but the 

important features of this helper class are outlined here) 

struct SolverHelper : private utility::Uncopyable 

{ 

  //Constructor 

  SolverHelper(// Arguments to initialize helper //) 

  { 

     // Initialize non-linear calculation 

  } 

      : 

  boost::shared_ptr<math::Matrix> matrix; // Jacobian matrix 

  boost::shared_ptr<math::Vector> X; // Current state 

      : 

  void operator() (const math::Vector &xCurrent, math::vector &newRHS) 

  { 

     // Evaluate RHS vector from current state xCurrent 

  } 

  void operator() (const math::Vector &xCurrent, 



33 
 

                   math::Matrix &Jacobian) 

  { 

      // Evaluate Jacobian from current state xCurrent 

  } 

} 

The important functions for this discussion are the overloaded operator() functions. In the 

application code, this helper struct can be initialized and used to create two functions of type 

JacobianBuilder and FunctionBuilder using the syntax 

SolverHelper helper(//Arguments to initialize helper //); 

math::JacobianBuilder jbuild = boost::ref(helper); 

math::FunctionBuilder fbuild = boost::ref(helper); 

At this point jbuild and fbuild are pointing to the overloaded functions in helper that 

have the appropriate arguments for a function of type JacobianBuilder and type 

FunctionBuilder. The boost::ref command provides a reference to the appropriate 

function in helper instead of making a copy, this preserves any state that might be present in 

helper between invocations of the functions jbuild and fbuild by the solver. 

For the power flow application using a non-linear solver, the creation of the solver is a two-step 

process. First, a pointer to a non-linear solver interface is created and then a particular solver 

instance is assigned to this interface. The power flow application can point to a hand-coded 

Newton-Raphson solver or a wrapper to the PETSc library of solvers. The code for this is the 

following 

boost::scoped_ptr<math::NonlinearSolverInterface> solver; 

if (useNewton) { 

  math::NewtonRaphsonSolver *tmpsolver = 

    new math::NewtonRaphsonSolver(*(helper.matrix), jbuild, fbuild); 

  solver.reset(tmpsolver); 

} else { 

  solver.reset(new math::NonlinearSolver(*(helper.matrix), jbuild, 

fbuild)); 

} 

If you are only interested in using the NonlinearSolver, then it is possible to dispense with 

the NonlinearSolverInterface and just use the NonlinearSolver directly. The 

remaining call to invoke the solver is just 

  solver->solver(*helper.X); 



34 
 

Additional calls are likely to be added to these to allow user-specified parameters from the input 

deck to be sent to the solver. In the case of the NonlinearSolver, these can be used to 

specify which PETSc solver should be used. 

More details on how to use the non-linear solvers can be found by looking at the powerflow 

module in the GridPACK source code. 

Network Components 

Network component is a generic term for objects representing buses and branches. These objects 

determine the behavior of the system and the type of analyses being done. Branch components 

can represent transmission lines and transformers while bus components could model loads, 

generators, or something else. Both kinds of components could represent measurements (e.g. for 

a state estimation analysis).  

Network components cover a fairly broad range of behaviors and there is little that can be said 

about them outside the context of a specific problem. Each component inherits from a matrix-

vector interface, which enables the framework to generate matrices and vectors from the network 

in a relatively straightforward way. In addition, buses inherit from a base bus interface and 

branches inherit from a base branch interface. The relationship between these interfaces is shown 

in Figure 5. 

 

Figure 5. Schematic diagram showing the interface hierarchy for network components. 



35 
 

These base interfaces provide mechanisms for accessing the neighbors of a bus or branch and 

allow developers to specify what data is transferred in ghost exchanges. They do not define any 

physical properties of the bus or branch, it is up to application developers to do this. 

Of these interfaces, the matrix-vector interfaces are the most important. The 

MatVecInterface is used for most calculations that directly model the physics of the power 

grid and described problems where the dependent and independent variables are associated with 

buses. The GenMatVecInterface is used for problems where variables are also associated 

with branches, such as state estimation or Kalman filter calculations. This section will describe 

the MatVecInterface, the GenMatVecInterface is described in more detail later in this 

document. The MatVecInterface is designed to answer the question of what block of data is 

contributed by a bus or branch to a matrix or vector and what the dimensions of the block are. 

For example, in constructing the Y-matrix for a power flow problem using a real-valued 

formulation, the grid components representing buses contribute a 2×2 block to the diagonal of 

the matrix. Similarly, the grid components representing branches contribute a 2×2 block to the 

off-diagonal elements. (Note that if the Y-matrix is expressed as a complex matrix, then the 

blocks are of size 1×1.) The location of these blocks in the matrix is determined by the location 

of the corresponding buses and branches in the network, but the indexing calculations required to 

determine how this location maps to a location in the matrix can be made completely transparent 

to the user via the mapper module.  

Because the matrix-vector interface focuses on small blocks, it is relatively easy for power grid 

engineers to write the corresponding methods. The full matrices and vectors can then be 

generated from the network using simple calls to the mapper interface (see the discussion below 

on the mapper module). All of the base network component classes reside in the 

gridpack::component namespace. 

The primary function of the MatVecInterface class is to enable developers to build the 

matrices and vectors used in the solution algorithms for the network. It eliminates a large number 

of tedious and error-prone index calculations that would otherwise need to be performed in order 

to determine where in a matrix a particular data element should be placed. The 

MatVecInterface includes basic constructors and destructors. The first set of non-trivial 

operations are implemented on buses and set the values of diagonal blocks in the matrix. 

Additional functions are implemented on branches and set values for off-diagonal elements. 

Vectors can be created by calling functions defined on buses. These functions are described in 

detail below. 

The functions that are used to create diagonal matrix blocks are 

virtual bool matrixDiagSize(int *isize, int *jsize) const 

 

virtual bool matrixDiagValues(ComplexType *values) 



36 
 

virtual bool matrixDiagValues(RealType *values) 

 

These functions are virtual functions and are expected to be overwritten by application-specific 

bus and branch classes. Depending on whether the application should create real or complex 

matrices, either the real or complex versions of matrixDiagValues can be implemented. 

The default behavior is to return 0 for isize and jsize for matrixDiagSize and to return 

false for all functions. These functions will not build a matrix unless overwritten by the 

application. Not all functions need to be overwritten by a given bus or branch class. Generally, 

only a subset of functions may be needed by an application. 

The matrixDiagSize function returns the size of the matrix block that is contributed by the 

bus to a matrix. If a single number is contributed by the bus, the matrixDiagSize function 

returns 1 for both isize and jsize. Similarly, for a 2×2 block then both isize and jsize 

are set to 2. The return value is true if the bus contributes to the matrix, otherwise it is false. 

Returning false can occur, for example, if the bus is the reference bus in a power flow 

calculation. For a more complicated calculation, such as a dynamic simulation with multiple 

generators on some buses, the size of the matrix blocks can differ from bus to bus. Note that the 

values returned by matrixDiagSize refer only to the particular bus on which the function is 

invoked. It does not say anything about other buses in the system. 

The matrixDiagValues function returns the actual values for the matrix block associated 

with the bus for which the function is invoked. The values are returned as a linear array with 

values returned in column-major order. For a 2×2 block, this means the first value is at the (0,0) 

position, the second value is at the (1,0) position, the third value is at the (0,1) position and the 

fourth value is at the (1,1) position. This function also returns true if the bus contributes to the 

matrix and false otherwise. This may seem redundant, since the matrixDiagSize function 

has already returned this information but it turns out there are certain applications where it is 

desirable for the matrixDiagSize function to return true and the matrixDiagValues 

function to return false. The buffer values is supplied by the calling program and is expected 

to be big enough, based on the dimensions returned by the matrixDiagSize function, to 

contain all returned values. 

The functions that are used to return values for off-diagonal matrix elements are listed below. 

These are usually only implemented for branches. 

virtual bool matrixForwardSize(int *isize, int *jsize) const 

 

virtual bool matrixForwardValues(ComplexType *values) 

 

virtual bool matrixReverseSize(int *isize, int *jsize) const 



37 
 

 

virtual bool matrixReverseValues(ComplexType *values) 

Only the complex versions of these functions are listed but equivalent functions for real matrices 

are available. These functions work in a similar way to the functions for creating blocks along 

the diagonal, except that they split off-diagonal matrix calculations into forward elements and 

reverse elements. The initial approximate location of an off-diagonal matrix element in a matrix 

is based in some internal indices assigned to the buses at either end of the branch. Suppose that 

these indices are i, corresponding to the “from” bus and j, corresponding to the “to” bus. The 

“forward” functions assume that the request is for the ij element while the “reverse” functions 

assume that the request is for the ji element. Another way of looking at this is the following: as 

discussed below, branches contain pointers to two buses. The first is the “from” bus and the 

second is the “to” bus. The forward functions assume that the “from” bus corresponds to the first 

index of the element, the reverse functions assume that the “from” bus corresponds to the second 

index of the element. Note that if a bus does not contribute to a matrix, then the branches that are 

connected to the bus should also not contribute to the matrix. 

The final set of functions in the MatVecInterface that are of interest to application 

developers are designed to set up vectors. These are usually implemented only for buses. These 

functions are analogous to the functions for creating matrix elements 

virtual bool vectorSize(int *isize) const 

 

virtual bool vectorValues(ComplexType *values) 

The vectorSize function returns the number of elements contributed to the vector by a bus 

and the vectorValues returns the corresponding values. The vectorValues function 

expects the buffer values to be allocated by the calling program. In addition to functions that can 

be used to specify a vector, there is an additional function that can be used to push values from a 

vector back onto a bus. This function is 

virtual void setValues(ComplexType *values) 

The buffer contains values from the vector corresponding to internal variables in the bus and this 

function can be used to set the bus variables. The setValues function could be used to assign 

bus variables so that they can be used to recalculate matrices and vectors for an iterative loop in a 

non-linear solver or so that the results of a calculation can be exported to an output file. Real 

versions of the vectorValues and setValues functions are available for real vectors. 

The BaseComponent class contains additional functions that contribute to the base properties 

of a bus or branch. Again, most of the functions in this class are virtual and are expected to be 

overwritten by actual implementations. However, not all of them need to be overwritten by a 



38 
 

particular bus or branch class. Many of these functions are used in conjunction with the 

BaseFactory class, which defines methods that run over all buses and branches in the 

network and invokes the functions defined below. 

The load function 

virtual void load(const boost::shared_ptr<DataCollection> &data) 

is used to instantiate components based on data in the network configuration file that is used to 

create the network. It is used in conjunction with the DataCollection object, which is 

described in more detail below. Networks are generally created by first instantiating a network 

parser. The parser is used to read in an external network file and create the network topology. 

The next step is to invoke the partition function on the network to get all network elements 

properly distributed between processors. At this point, the network, including ghost buses and 

branches, is complete and each bus and branch has a DataCollection object containing all 

the data in the network configuration file that pertains to that particular bus or branch. The data 

in the DataCollection object is stored as simple key-value pairs. This data is used to 

initialize the corresponding bus or branch by invoking the load function on all buses and 

branches in the system. The bus and branch classes must implement the load function to extract 

the correct parameters from the DataCollection object and use them to assign internal 

component parameters. 

Only one type of bus and one type of branch is associated with each network but many different 

types of equations can be generated by the network. To allow developers to embed many 

different behaviors into a single network and to control at what points in the simulation those 

behaviors can be manifested, the concept of modes is used. The function 

virtual void setMode(int mode) 

can be used to set an internal variable in the component that tells it how to behave. The variable 

“mode” usually corresponds to an enumerated constant that is part of the application definition. 

For example, in a power flow calculation it might be necessary to calculate both the Y-matrix 

and the equations for the power flow solution containing the Jacobian matrix and the right-hand 

side vector. To control which matrix gets created, two modes are defined: “YBus” and 

“Jacobian”. Inside the matrix functions in the MatVecInterface, there is a condition 

    if (p_mode == YBus) { 

      // Return values for Y-matrix calculation 

    } else if (p_mode == Jacobian) { 

      // Return values for power flow calculation 

    } 



39 
 

The variable “p_mode” is an internal variable in the bus or branch that is set using the 

setMode function. 

The function 

virtual bool serialWrite(char *string, const int bufsize, 

                         const char *signal = NULL) 

is used in the serial IO modules described below to write out properties of buses or branches to 

standard output. The character buffer “string” contains a formatted line of text representing 

the properties of the bus or branch that is written to standard output, the variable “bufsize” 

gives the number of characters that “string” can hold, and the variable “signal” can be used 

to control what data is written out. The return value is true if the bus or branch is writing out data 

and false otherwise. For example, if the application is writing out the properties of all buses with 

generators, then the signal “generator” might be passed to this subroutine. If a bus has 

generators, then a string is copied into the buffer “string” and the function returns true, 

otherwise it returns false. The buffer “string” is allocated by the calling program. The variable 

“bufsize” is provided so that the bus or branch can determine if it is overwriting the buffer. 

Returning to the generator example, if this call returns a separate line for each generator, then it 

is possible that a bus with too many generators might exceed the buffer size. This could be 

detected by the implementation if the buffer size is known. More information on how this 

function is used can be found in the discussion of the serial IO modules. 

The BaseComponent class also contains two functions that must be implemented if buses 

and/or branches need to exchange data with other processors. Data that must be exchanged needs 

to be placed in buffers that have been allocated by the network. The bus and branch objects 

specify how large the buffers need to be by implementing the function 

virtual int getXCBufSize() 

This function must return the same value for all buses and all branches in the same bus or branch 

classes. Buses can return a different value than branches. For example, in a power flow 

calculation, it is necessary that ghost buses get new values of the phase angle and voltage 

magnitude increments. These are both real numbers so the getXCBusSize routine needs to 

return the value 2*sizeof(double). Note that all buses must return this value even if the 

bus is a reference bus and does not participate in the calculation. 

This function is queried by the network and used to allocate a buffer of the appropriate size. The 

network then informs the bus and branch objects where the location of the buffer is by invoking 

the function 

virtual void setXCBuf(void *buf) 



40 
 

The bus or branch can use this function to set internal pointers to this buffer that can be used to 

assign values to the buffer (which is done before a ghost exchange) or to collect values from the 

buffer (which is done after a ghost exchange). Continuing with the powerflow example, the bus 

implemention of the setXCBuf function would look like 

    setXCBuf(void *buf) 

    { 

      p_Ang_ptr = static_cast<double*>(buf); 

      p_Mag_ptr = p_Ang_ptr+1; 

    } 

The pointers p_Ang_ptr and p_Mag_ptr of type double are internal variables of the bus 

implementation and can be used elsewhere in the bus whenever the voltage angle and voltage 

magnitude variables are needed. After a network update operation, ghost buses will contain 

values for these variables that were calculated on the home processor that owns the 

corresponding bus. 

The BaseBusComponent and BaseBranchComponent classes contain a few additional 

functions that are specific to whether or not a component is a bus or a branch. The 

BaseBusComponent class contains functions that can be used to identify attached buses or 

branches, determine if the bus is a reference bus, and recover the original indices of the bus. 

Other functions are included in the BaseBusClass but these are not usually required by 

application developers and are used primarily to implement other GridPACK functions. 

To get a list of pointers to all branches connected to a bus, the function 

void getNeighborBranches( 

   std::vector<boost::shared_ptr<BaseComponent> > &nghbrs) const 

can be called. This provides a list of pointers to all branches that have the calling bus as one of 

its endpoints. This function can be used inside a bus method to loop over attached branches, 

which is a common motif in matrix calculations. For example, to evaluate the contribution to a 

diagonal element of the Y-matrix coming from transmission lines, it is necessary to perform the 

sum 

                                           𝑌𝑖𝑖 = − ∑ 𝑌𝑖𝑗𝑗≠𝑖  

where the Yij are the contribution due to transmission lines from the branch connecting i and j. 

The code inside a bus component that evaluates this sum can be written as 

std::vector<boost::shared_ptr<BaseComponent> > branches; 

getNeighborBranches(branches); 

ComplexType y_diag(0.0,0.0); 



41 
 

for (int i=0; i<branches.size(); i++) { 

  YBranch *branch = dynamic_cast<YBranch*>(branches[i].get()); 

  y_diag += branch->getYContribution(); 

} 

The function getYContribution evaluates the quantity Yij using parameters that are local to 

the branch. The return value is then accumulated into the bus variable y_diag, which is 

eventually returned through the matrixDiagValues function. The dynamic_cast is 

necessary to convert the pointer from a BaseComponent object to the application class 

YBranch. The BaseComponent class has no knowledge of the getYContribution 

function, this is only implemented in the class YBranch. 

A function that is similar to getNeighborBranches is 

void getNeighborBuses( 

   std::vector<boost::shared_ptr<BaseComponent> > &nghbrs) const 

which can be used to get a list of the buses that are connected to the calling bus via a single 

branch. 

Many power grid problems require the specification of a special bus as a reference bus. This 

designation can be handled by the two functions 

void setReferenceBus(bool status) 

 

bool getReferenceBus() const 

The first function can be used (if called with the argument true) to designate a bus as the 

reference bus and the second function can be called to inquire whether a bus is the reference bus. 

A reference bus is usually set when the network configuration file is read in and does not need to 

be set explicitly by the application. 

Finally, it is often useful for exporting results if the original index of the bus is available. This 

can be recovered using the function 

int getOriginalIndex() const 

The functions in the BaseBusComponent class only work correctly after a call to the base 

factory method setComponents, which is described below. Other functions in the 

BaseBusComponent class are needed within the framework but are not usually required by 

application developers. 



42 
 

The BaseBranchComponent class is similar to the BaseBusComponent class and 

provides basic information about branches and the buses at either end of the branch. To retrieve 

pointers to the buses at the ends of the branch, the following two functions are available 

boost::shared_ptr<BaseComponent> getBus1() const 

 

boost::shared_ptr<BaseComponent> getBus2() const 

The getBus1 function returns a pointer to the “from” bus, the getBus2 function returns a 

pointer to the “to” bus. 

Two other functions in the BaseBranchComponent class that are useful for writing output 

are 

int getBus1OriginalIndex() const 

 

int getBus2OriginalIndex() const 

These functions get the original index of “from” and “to” buses. Unlike buses, the branches are 

not characterized by a single index. Similar to the functions in the BaseBusComponent class, 

the functions in the BaseBranchComponent class will not work correctly until the 

setComponents method has been called in the base factory class. 

Finally, a separate network component class that is associated with all buses and branches 

(including ghost buses and branches) is the DataCollection class. This class is a simple 

container that can be used to store key-value pairs. It also resides in the 

gridpack::component namespace. When the network is created using a standard parser to 

read a network configuration file (see more on parsers below), each bus and branch in the 

network, including the ghosts, has an associated DataCollection object that contains all 

parameters from the configuration file that are associated with that particular bus or branch. 

These can be retrieved from the DataCollection object using some simple accessors. Data 

can be stored in two ways inside the DataCollection object. The first method assumes that 

there is only a single instance of the key-value pair, the second assumes there are multiple 

instances. This second case can occur, for example, if there are multiple generators on a bus. 

Generators are characterized by a collection of parameters and each generator has its own set of 

parameters. The generator parameters can be indexed so that they can be matched with a specific 

generator. 

Assuming that a parameter only appears once in the data collection, the contents of a 

DataCollection object can be accessed using the functions 

bool getValue(const char *name, int *value) 

bool getValue(const char *name, long *value) 



43 
 

bool getValue(const char *name, bool *value) 

bool getValue(const char *name, std::string *value) 

bool getValue(const char *name, float *value) 

bool getValue(const char *name, double *value) 

bool getValue(const char *name, ComplexType *value) 

These functions return true if a variable of the correct type is stored in the DataCollection 

object with the key “name”, otherwise it returns false. 

If the variable is stored multiple times in the DataCollection, then it can be accessed with 

the functions 

bool getValue(const char *name, int *value, const int idx) 

bool getValue(const char *name, long *value, const int idx) 

bool getValue(const char *name, bool *value, const int idx) 

bool getValue(const char *name, std::string *value, const int idx) 

bool getValue(const char *name, float *value, const int idx) 

bool getValue(const char *name, double *value, const int idx) 

bool getValue(const char *name, ComplexType *value, const int idx) 

where idx is an index that identifies a particular instance of the key. These functions are used 

primarily to implement the network component load method, described above for the 

BaseComponent class. 

The data collection is generally filled with values after the parser is called to create the network. 

The nomenclature for these values can be found in the dictionary.hpp file located under 

src/parser under the main GridPACK directory. 

The DataCollection objects can also be used to transfer data between different networks. 

This is important for chaining different types of calculations together. For example, a powerflow 

or state estimation calculation might be used to initialize a dynamic simulation and the 

DataCollection object can be used as a mechanism for transferring data between the two 

different networks. Because of this, the functions for adding more data to the 

DataCollection and the functions for overwriting the values of existing data are useful. 

New key value pairs can be added to a data collection object using the functions 

void addValue(const char *name, int value) 

void addValue(const char *name, long value) 

void addValue(const char *name, bool value) 

void addValue(const char *name, char *value) 

void addValue(const char *name, float value) 

void addValue(const char *name, double value) 



44 
 

void addValue(const char *name, ComplexType value) 

 

void addValue(const char *name, int value, const int idx) 

void addValue(const char *name, long value, const int idx) 

void addValue(const char *name, bool value, const int idx) 

void addValue(const char *name, char *value, const int idx) 

void addValue(const char *name, float value, const int idx) 

void addValue(const char *name, double value, const int idx) 

void addValue(const char *name, ComplexType value, const int idx) 

Existing values can be overwritten with the functions 

bool setValue(const char *name, int value) 

bool setValue(const char *name, long value) 

bool setValue(const char *name, bool value) 

bool setValue(const char *name, char *value) 

bool setValue(const char *name, float value) 

bool setValue(const char *name, double value) 

bool setValue(const char *name, ComplexType value) 

 

bool setValue(const char *name, int value, const int idx) 

bool setValue(const char *name, long value, const int idx) 

bool setValue(const char *name, bool value, const int idx) 

bool setValue(const char *name, char *value, const int idx) 

bool setValue(const char *name, float value, const int idx) 

bool setValue(const char *name, double value, const int idx) 

bool setValue(const char *name, ComplexType value, const int idx) 

The functions return false if the value is not already in the DataCollection object. 

Factories 

The network component factory is an application-dependent piece of software that is designed to 

manage interactions between the network and the network component objects. Most operations 

in the factory run over all buses and all branches and invoke some operation on each component. 

An example is the “load” operation. After the network is read in from an external file, it 

consists of a topology and a set of simple data collection objects containing key-value pairs 

associated with each bus and branch. The load operation then runs over all buses and branches 

and instantiates the appropriate objects by invoking a local load method that takes the values 

from the data collection object and uses it to instantiate the bus or branch. The application 

network factory is derived from a base network factory class that contains some additional 

routines that set up indices, assign neighbors to individual buses and branches and assign buffers. 



45 
 

The neighbors are originally only known to the network, so a separate operation is needed to 

push this information down into the bus and branch components. The network component 

factory may also execute other routines that contribute to setting up the network and creating a 

well-defined state. 

Factories can be derived from the BaseFactory class, which is a templated class that is based 

on the network type. It resides in the gridpack::factory namespace. The constructor for a 

BaseFactory object has the form 

BaseFactory<MyNetwork>(boost::shared_ptr<MyNetwork> network) 

The BaseFactory class supplies some basic functions that can be used to help instantiate the 

components in a network. Other methods can be added for particular applications by inheriting 

from the BaseFactory class. The two most important functions in BaseFactory are 

virtual void setComponents() 

 

virtual void setExchange() 

The setComponents method pushes topology information available from the network into the 

individual buses and branches using methods in the base component classes. This operation 

ensures that operations such as getNeighborBuses, etc. work correctly. The topology 

information is originally only available in the network and it requires additional operations to 

imbed it in individual buses and branches. Being able to access this information directly from the 

buses and branches can simplify application programming substantially. 

The setExchange function allocates buffers and sets up pointers in the components so that 

exchange of data between buses and branches can occur and ghost buses and branches can 

receive updated values of the exchanged parameters. This function loops over the 

getXCBusSize and setXCBuf commands defined in the network component classes and 

guarantees that buffers are properly allocated and exposed to the network components. 

Two other functions are defined in the BaseFactory class as convenience functions. The first 

is 

virtual void load() 

This function loops over all buses and branches and invokes the individual bus and branch load 

methods. This moves information from the DataCollection objects that are instantiated 

when the network is created from a network configuration file to the bus and branch objects 

themselves. The second convenience function is 

virtual void setMode(int mode) 



46 
 

This function loops over all buses and branches in the network and invokes each bus and branch 

setMode method. It can be used to set the behavior of the entire network in single function call. 

Some utility functions in the BaseFactory class that are occasionally useful are 

bool checkTrue(bool flag) 

bool checkTrueSomewhere(bool flag) 

The checkTrue function returns true if the variable flag is true on all processors, otherwise it 

returns false. This function can be used to check if a condition has been violated somewhere in 

the network. The checkTrueSomewhere function returns true if flag is true on at least one 

processor. This function can be used to check if a condition is true anywhere in the system. 

Mapper Module 

The mappers are a collection of generic capabilities that can be used to generate a matrices or 

vectors from the network components. This is done by running over all the network components 

and invoking methods in the matrix-vector interface. The mapper is basically a transformation 

that converts a set of network components into a matrix or vector based on the behavior of their 

matrix-vector interfaces. It has no explicit dependencies on either the network components or the 

type of analyses being performed so this capability is applicable across a wide range of 

problems. At present there are three types of mapper, the standard mapper described here that is 

implemented on top of the MatVecInterface, a more generalized mapper that utilizes the 

GenMatVecInterface and a mapper for generating matrices resembling “fat” vectors. These 

are dense matrices that are basically a collection of column vectors. The generalized mapper and 

its corresponding interface are described in a later section below, along with the mapper for 

generating fat vectors. The mapper discussed in this section is used for problems where both 

dependent and independent variables are associated with buses, which is the case for problems 

such as power flow calculations and dynamic simulation. Other problems, such as state 

estimation, have variables associated with both buses and branches and require the more general 

interface. 

The basic matrix-vector interface contains functions that provide two pieces of information about 

each network component. The first is the size of the matrix block that is contributed by the 

component and the second is the values in that block. Using this information, the mapper can 

calculate the dimensions of the matrix and where individual elements in the matrix are located. 

The construction of a matrix by the mapper is illustrated in Figure 6 for a small network. Figure 

6(a) shows a hypothetical network. The contributions from each network component are shown 

in Figure 6(b). Note that some buses and branches do not contribute to the matrix. This could 

occur in real systems because the transmission line corresponding to the branch has failed or 

because a bus represents the reference bus. In addition, it is possible that buses and branches can 

contribute different size blocks to the matrix. The mapping of the individual contributions from 



47 
 

the network in Figure 6(b) to initial matrix locations is shown in Figure 6(c). This is followed by 

elimination of gaps in the matrix in Figure 6(d). 

 

 



48 
 

 

 

Figure 6. A schematic diagram of the matrix map function. The bus numbers in (a) and (b) map 

to approximate row and column locations in (c). (a) a small network (b) matrix blocks associated 

with branches and buses. Not that not all blocks are the same size and not all buses and branches 

contribute (c) initial construction of matrix based on network indices (d) final matrix after 

eliminating gaps 

The most complex part of generating matrices and vectors is implementing the functions in the 

MatVecInterface. Once this has been done, actually creating matrices and vectors using 

the mappers is quite simple. The MatVecInterface is associated with two mappers, one that 

creates matrices from buses and branches and a second that can create vectors from buses. Both 

mappers are templated objects based on the type of network being used and use the 

gridpack::mapper namespace. The FullMatrixMap object runs over both buses and 

branches to set up a matrix. The constructor is 

FullMatrixMap<MyNetwork>(boost::shared_ptr<MyNetwork> network) 

The network is passed in to the object via the constructor. The constructor sets up a number of 

internal data structures based on what mode has been set in the network components. For 



49 
 

example, for a power flow application where it might be necessary to create both a Y-matrix and 

a Jacobian matrix, it would be necessary to create two mappers. If the first mapper is created 

while the mode is set to construct the Y-matrix, then it will be necessary to instantiate a second 

mapper to create the Jacobian for a power flow calculation. Before instantiating the second 

matrix, the mode should be set to Jacobian. 

Once the mapper has been created, a matrix can be generated using the call 

boost::shared_ptr<gridpack::math::Matrix> mapToMatrix() 

This function creates a new matrix and returns a pointer to it. If a matrix already exists and it is 

only necessary to update the values, then the functions 

void mapToMatrix( 

   boost::shared_ptr<gridpack::math::Matrix> &matrix) 

 

void mapToMatrix(gridpack::math::Matrix &matrix) 

can be used. These functions use the existing matrix data structures and overwrite the values of 

individual elements. For these to work, it is necessary to use the same mapper that was used to 

create the original matrix and to have the same mode set in the network components. 

Additional operations that can be used on existing matrices include 

void overwriteMatrix(boost::shared_ptr<gridpack::math::Matrix> matrix) 

void overwriteMatrix(gridpack::math::Matrix &matrix) 

void incrementMatrix(boost::shared_ptr<gridpack::math::Matrix> matrix) 

void incrementMatrix(gridpack::math::Matrix &matrix) 

These operations are designed to support making small changes in an existing matrix instead of 

reconstructing the full matrix from scratch. This can happen in contingency calculations or 

simulations of faults where a single grid element goes out or changes value. Instead of rebuilding 

the entire matrix, it is possible to modify only a small portion if it. To use these functions, it is 

necessary to define at least two modes in the network components. The first mode is used to 

build the original matrix, the second is used to make changes. All MatVecInterface 

functions that return true using the second mode (the one making changes) must return true for 

the first mode (used to build the original matrix). Furthermore, all block sizes for the second 

mode must match the block sizes in the first mode. The overwriteMatrix functions replace 

the values in the matrix with the values returned by the MatVecInterface functions, the 

incrementMatrix functions add these values to whatever is already in the matrix. 

The vector mapper works in an entirely analogous way to the matrix mapper. The constructor for 

the BusVectorMap class is 



50 
 

BusVectorMap<MyNetwork>(boost::shared_ptr<MyNetwork> network) 

and the function for building a new vector is 

boost::share_ptr<gridpack::math::Vector> mapToVector() 

The functions for overwriting the values of an existing vector are 

void mapToVector( 

    boost::shared_ptr<gridpack::math::Vector> &vector) 

 

void mapToVector(gridpack::math::Vector &vector) 

The vector map can also be used to write values back to buses using the function 

void mapToBus(const gridpack::math::Vector &vector) 

This function will copy values from the vector into the bus using the setValues function in 

the MatVecInterface. 

Parser Module 

The parser modules are designed to read an external network file, set up the network topology 

and assign any parameter fields in the file to simple fields. The parsers do not partition the 

network, they are only responsible for reading in the network and distributing the different 

network elements in a way that guarantees that not too much data ends up on any one processor. 

The parsers are also not responsible for determining if the input is compatible with the analysis 

being performed. This can be handled, if desired, by building checks into the network factory. 

The parsers are only responsible for determining if they can read the file. 

Currently, GridPACK only supports two file formats. Files based on the PSS/E PTI version 23 

and version 33 formats can be read in using the classes PTI23_parser and PTI33_parser. 

Both parsers can also read PSS/E formatted .dyr files that are used to read in extra parameters 

used in dynamic simulation. The parsers are templated classes that again use the network type as 

a template argument. Both PTI23_parser and PTI33_parser are located in the 

gridpack::parser namespace. These classes have only a few important functions. The first 

are the constructors 

PTI23_parser<MyNetwork>(boost::shared_ptr<MyNetwork> network) 

PTI33_parser<MyNetwork>(boost::shared_ptr<MyNetwork> network) 

The remaining functions are common to both parsers. To read a PSS/E PTI file containing a 

network configuration and generate a network, the parser calls the method 

void parse(const std::string &filename) 



51 
 

where filename refers to the location of the network configuration file. To use this parser, the 

network object with the appropriate bus and branch classes is instantiated and then passed to the 

constructor of the PTI23_parser or PTI33_parser object. The parse method is then 

invoked with the name of the network configuration file passed in as an argument and the 

network is filled out with buses and branches. The parameters in the network configuration file 

are stored as key-value pairs in the DataCollection object associated with each bus and 

branch. Once the network partition method has been called, the network is fully distributed and 

ghost buses and branches have been created. Other operations operations can then be performed. 

A variant on parse is the command 

void externalParse(const std::string &filename) 

This command can be used to parse .dyr files containing dynamic simulation parameters. The 

difference between this function and parse is that externalParse assumes that the network 

already exists and that the parameters that are read in will be added to it. This command should 

therefore only be called after a network has been created using parse. 

Another key part of the parsing capability is the dictionary.hpp file, which is designed to 

provide a common nomenclature for parameters associated with power grid components. This 

file is located in the src/parser directory under the main GridPACK directory. The 

definitions in the dictionary.hpp are used to extract parameters from the 

DataCollection objects created by the parser. For example, the parameter describing the 

resistance of a transmission element is given the common name BRANCH_R. This string is 

defined as a macro in the dictionary.hpp file as 

#define BRANCH_R “BRANCH_R” 

The use of a macro provides compile time error checking on the name. The goal of using the 

dictionary is that all parsers will eventually store the branch resistance parameter in the 

DataCollection object using this common name. Applications can then switch easily 

between different network configuration file formats by simply exchanging parsers, which will 

all store corresponding parameters using a common naming convention that can used within the 

code to access data. 

Serial IO Module 

The serial IO module is designed to provide a simple mechanism for writing information from 

selected buses and/or branches to standard output or a file using a consistent ordering scheme. 

Individual buses and/or branches implement a write method that will write bus/branch 

information to a single string. This information usually consists of bus or branch identifiers plus 

some parameters that are desired in the output. The serial IO module then gathers this 

information, moves it to the head node, and writes it out in a consistent order. An example of this 

type of output is shown below. 



52 
 

   Bus Voltages and Phase Angles 

 

   Bus Number      Phase Angle      Voltage Magnitude 

          1          0.000000             1.060000 

          2         -4.982589             1.045000 

          3        -12.725100             1.010000 

          4        -10.312901             1.017671 

          5         -8.773854             1.019514 

          6        -14.220946             1.070000 

          7        -13.359627             1.061520 

          8        -13.359627             1.090000 

          9        -14.938521             1.055932 

         10        -15.097288             1.050985 

         11        -14.790622             1.056907 

         12        -15.075585             1.055189 

         13        -15.156276             1.050382 

         14        -16.033645             1.035530 

Figure 7. Example output from buses in a 14 bus problem. 

Note that the output is ordered by bus index (which matches the ordering of the buses in the 

original network configuration file). This ordering would be preserved regardless of the number 

of processors used in the calculation. 

Like the mapper, the serial IO classes are relatively easy to use. Most of the complexity is 

associated with implementing the serialWrite methods in the buses and branches. Data can 

be written out for buses and/or branches using either the SerialBusIO class or the 

SerialBranchIO class. These are again templated classes that take the network as an 

argument in the constructor. Both classes reside in the gridpack::serial_io namespace. 

The SerialBusIO constructor has the form 

SerialBusIO<MyNetwork>(int max_str_len, 

   boost::shared_ptr<MyNetwork> network) 

The variable max_str_len is the length, in bytes, of the maximum size string you would want 

to write out using this class and network is a pointer to the network that is used to generate 

output. The value of max_str_len is used to allocate internal memory and also determines how 

much data needs to be moved around each time data from the entire network is written out. As 

the value of this parameter increases, the amount of memory needed and the amount of data that 

needs to move increases, so this value should be kept to a minimum, if possible.  

Two additional functions can be used to actually generate output. They are 

void header(const char *string) const 

and  



53 
 

void write(const char *signal = NULL) 

The header method is a convenience function that will only write the buffer string from the 

head processor (process 0) and can be used for creating the headings above an output listing. The 

write function traverses all the buses in the network and writes out the strings generated by the 

serialWrite methods in the buses. The SerialBusIO object is responsible for reordering 

these strings in a consistent manner, even if the buses are distributed over many processors. The 

optional variable “signal” is passed to the serialWrite methods and can be used to 

control what output is listed. For example, in one part of a simulation it might be desirable to list 

the voltage magnitude and phase angle from a powerflow calculation and in another part of the 

calculation to list the rotor angle for a generator. These two outputs could be distinguished from 

each other in the serialWrite function using the signal variable. 

To generate the output in Figure 7, the following calls are used 

gridpack::serial_io::SerialBusIO<MyNetwork> busIO(128,network); 

busIO.header("\n   Bus Voltages and Phase Angles\n"); 

busIO.header( 

  "\n   Bus Number      Phase Angle      Voltage Magnitude\n"); 

busIO.write(); 

The first call creates the SerialIOBus object and specifies the internal buffers size (128 

bytes). This buffer must be large enough to incorporate the output from any call to one of the 

serialWrite calls in the bus components. The next two lines print out the header on top of 

the bus listing and the last line generates the listing itself. The serialWrite implementation 

looks like 

bool gridpack::myapp::MyBus::serialWrite(char *string, 

       const int bufsize, const char *signal) 

{   

  double pi = 4.0*atan(1.0); 

  double angle = p_a*180.0/pi; 

  sprintf(string, "     %6d      %12.6f         %12.6f\n", 

          getOriginalIndex(),angle,p_v); 

} 

For this simple case, signal is ignored as well as the variable bufsize. If more than one type 

of bus listing was desired, additional conditions based on the value of signal could be 

included. For the case of generators, the length of the output may vary from one bus to the next 

since buses can have different numbers of generators associated with them. In this case it may be 

important to check the length of the output string being generated against the size of the buffer to 

make sure there is no overwrite and to take some kind of appropriate action if there is. 



54 
 

If you wish to direct the output to a file, then calling the function 

void open(const char *filename) 

will direct all output from the serial IO object to the file specified in the variable filename. 

Similarly, calling the function 

void close(void) 

will close the file and all subsequent writes are directed back to standard output. The same 

SerialBusIO object can be used to write data to multiple different files, as long as the files 

are opened and closed sequentially. If two files need to be used at the same time, then two 

SerialBusIO objects need to be created. Two additional methods can be used to further 

control where output goes. If a file already exists, you can use the function 

boost::shared_ptr<std::ofstream> getStream() 

to recover a pointer to the file stream currently being used by the SerialBusIO object. This 

can then be used to redirect output from some other part of the code to the same file. The 

function 

void setStream(boost::shared_ptr<std::ofstream> stream) 

can be used to redirect the output from the SerialIOBus object to an already existing file. The 

main use of these two functions is to direct the output from both buses and branches to the same 

file instead of standard output. 

The SerialBranchIO module is similar to the SerialBusIO module but works by creating 

listings for branches. The constructor is 

SerialBranchIO<MyNetwork>(int max_str_len, 

   boost::shared_ptr<MyNetwork> network) 

and the header and write methods are 

void header(const char *string) const 

 

void write(const char *signal = NULL) 

These have exactly the same behavior as in the SerialBusIO class. Similarly, the methods 

void open(const char *filename) 

void close(void) 

boost::shared_ptr<std::ofstream> getStream() 

void setStream(boost::shared_ptr<std::ofstream> stream) 



55 
 

can be used to redirect output to a file instead of standard output. 

 The usual method for directing the output from both a SerialBusIO object and SerialBranchIO 

object to the same file is to use the calling sequence 

SerialBusIO<MyNetwork> busIO(max_str_len, network); 

SerialBranchIO<MyNetwork> branchIO(max_str_len, network); 

busIO.open(“file.dat”); 

branchIO.setStream(busIO.getStream()); 

The file can be closed by calling close from either busIO or branchIO. 

Configuration Module  

The configuration module is designed to provide a central mechanism for directing information 

from the input file to the components making up a given application. For example, information 

about convergence thresholds and maximum numbers of iterations might need to be picked up by 

the solver module from an external configuration file. The configuration module is designed to 

read files using a simple XML format that supports a hierarchical input. This can be used to 

control which input gets directed to individual objects in the application, even if the object is a 

framework component and cannot be modified by the application developer. 

The Configuration class is in the namespace gridpack::utility. This class follows 

the C++ singleton pattern and does not have a public constructor. The static method 

configuration() returns a pointer to the shared instance of this class and guaratantees that 

the same instance is used by all modules in an application. The shared instance can be initialized 

with data from an external file using the code 

gridpack::utility::Configuration * c =  

  gridpack::utility::Configuration::configuration() ;  

c->open(input_file, MPI_COMM_WORLD); 

The input file uses XML syntax. The single top-level element must be named “Configuration” 

but other elements may have module- and application-specific names. Refer elsewhere in this 

document for details.  For illustration purposes, an example configuration file might look like:  

<?xml version="1.0" encoding="utf-8"?> 
<Configuration> 
  <PowerFlow> 
    <networkConfiguration> IEEE118.raw </networkConfiguration> 
  </PowerFlow> 
  <DynamicSimulation> 
    <StartTime> 0.0 </StartTime> 
    <EndTime> 0.1 </EndTime> 
    <TimeStep> 0.001 </TimeStep> 
    <Faults> 
      <Fault> 
        <StartFault> 0.03 </StartFault> 



56 
 

        <EndFault> 0.06 </EndFault> 
        <Branch> 3 7 </Branch> 
      </Fault> 
      <Fault> 
        <StartFault> 0.07 </StartFault> 
        <EndFault> 0.06=8 </EndFault> 
        <Branch> 4 8 </Branch> 
      </Fault> 
    </Faults> 
  </DynamicSimulation> 
</Configuration> 

A value in this configuration file is accessed with a call to the overloaded method get(). The 

following line will return the value of the input file corresponding to the XML field 

“networkConfiguration” 

std::string s =  

    c->get("Configuration.PowerFlow.networkConfiguration",   

    "IEEE.raw"); 

The first argument has type Configuration::KeyType which is a typedef of 

std::string. Values are selected by hierarchically named “keys” using “.” as a separator. In 

the example input file, “PowerFlow” is a block under “Configuration” and 

“networkConfiguration” is, in turn, a block under “PowerFlow”. The second argument in get is 

a default value that is used if the field corresponding to the key can’t be found. There are 

overloaded versions of get() for accessing standard C++ data types: bool, int, long, 

float, double, ComplexType and std::string. For each type there are two variants. 

For integers these look like  

 int get(const KeyType &, int default_value) const ; 

 bool get(const KeyType &, int *) const; 

The first variant takes a key name and a default value and returns either the value in the 

configuration file or the default value when none is specified. In the second variant, a Boolean 

value is returned indicating whether or not the value was in the configuration file and the second 

argument points to an object that is updated with the configuration value when it is present.  For 

strings, the second argument is passed by reference.   

The method getCursor(KeyType) returns a pointer to an internal element in the hierarchy. 

This “cursor” supports the same get() methods as above but the names are now relative to the 

name of the  cursor. Thus, we might modify the previous example to: 

Configuration::CursorPtr p =  

c->getCursor("Configuration.PowerFlow"); 

 

std::string s = p->get("networkConfiguration",  



57 
 

"IEEE14.raw"); 

An additional use of such cursors is to access lists of values. The method  

typedef std::vector<CursorPtr> ChildCursors; 

 

void children(ChildCursors &); 

can be used to get a vector of all the elements that are children in the name hierarchy of some 

element. These children need not have unique names, as illustrated by the children of the 

“Faults” element shown above. In this example, each of the children is a cursor that can be used 

to access “StartFault”, “EndFault”, and “Branch” parameters for each of the “Fault” blocks. 

Again, returning to the sample input above, the following code will return a list of faults 

Configuration::CursorPtr p =  

c->getCursor("Configuration.DynamicSimulation.Faults"); 

ChildCursors faults; 

p->children(faults); 

The cursor p is set so that is is pointing at the Faults block in the input. The children function 

then picks up all XML blocks one level and returns a list of cursor pointers to those blocks. The 

individual data elements in faults can be accessed using the following loop 

int nfaults = faults.size() 

for (int i=0; i<nfaults; i++) { 

  double start = faults[i]->get(“StartFault”, 0.0); 

  double end = faults[i]->get(“EndFault”, 0.0); 

  std::string indices = faults[i]->get(“Branch”, “-1 -1”); 

  // Do something with these parameters 

} 

Note that this method does not have any way of distinguishing between different blocks below 

Faults and if two types of blocks where listed within the Faults block, the children 

method would pick up both of them. 

Developing Applications 
The previous section outlined most of the basic modules in the GridPACK framework. In this 

section, we provide an overview of how to use these modules to create actual applications by 

discussing the development of a power flow simulation application in detail. Actual examples of 

a power flow application can be found by looking at an example code located under the top-level 

GridPACK directory in src/applications/examples/powerflow. Users can also look at the power 

flow module located in the src/applications/modules/powerflow directory. The main difference 

between the power flow example code and the power flow module is that the module breaks up 



58 
 

the power flow calculation into more separate function calls and the module also has options for 

using a non-linear solver. The power flow bus and branch classes are located in the directory 

src/applications/components/pf_matrix. 

 A schematic of a power flow code based on GridPACK is shown in Figure 8. For different 

power grid problems, the details of the code will be different, but most of these motifs will 

appear at some point or other. The main differences will probably be in feedback loops as results 

from one part of the calculation are fed back into other parts. For example, an iterative solver 

will need to update the current values of the network components, which can then be used to 

generate new matrices and vectors that are fed back into the next iteration of the solver. The 

diagram in Figure 8 is not complete, but gives an overall view of code structure and data 

movement. 

 

Figure 8. Schematic of program flow for a power flow simulation. The yellow ovals are 

distributed data objects, the green blocks are GridPACK framework components and the blue 

blocks are application specific code. External files are red. 

As shown in the figure, application developers will need to focus on writing two or three sets of 

modules. The first is the network components. These are the descriptions of the physics and/or 

measurements that are associated with buses and branches in the power grid network. The 

network factory is a module that initializes the grid components on the network after the network 

is originally created by the import module. The power flow problem is simple enough that it can 

use a non-linear solver directly from the math module but even a straightforward solution such as 

this requires the developer to overwrite some functions in the factory that are used in the non-

linear solver iterations. 



59 
 

Most of the work involved in creating a new application is centered on creating the bus and 

branch classes. This discussion will describe in some detail the routines that need to be written in 

order to develop a working power flow simulation. Additional application modules for dynamic 

simulation and contingency analysis have also been included in the distribution and users are 

encouraged to look at these modules for additional coding examples on how to use GridPACK. 

The discussion below is designed to illustrate how to build an application and for brevity has left 

out some code compared to the working implementation. The source code contains more 

comment lines as well as some additional diagnostics that may not appear here. However, the 

overall design is the same and readers who have a good understanding of the following text 

should have no difficulty understanding the power flow source code. 

For the power flow calculation, the buses and branches will be represented by the classes PFBus 

and PFBranch. PFBus inherits from the BaseBusComponent class, so it automatically 

inherits the BaseComponent and MatVecInterface classes as well. The first thing that 

must be done in creating the PFBus component is to overwrite the load function in the 

BaseComponent class. The original function is just a placeholder that performs no action. The 

load function should take parameters from the DataCollection object associated with each 

bus and use them to initialize the bus component itself. For the PFBus component, a simplified 

load function is 

void gridpack::powerflow::PFBus::load( 

    const boost::shared_ptr<gridpack::component 

    ::DataCollection> &data) 

{ 

  data->getValue(CASE_SBASE, &p_sbase); 

  data->getValue(BUS_VOLTAGE_ANG, &p_angle); 

  data->getValue(BUS_VOLTAGE_MAG, &p_voltage); 

  p_v = p_voltage; 

  double pi = 4.0*atan(1.0); p_angle = p_angle*pi/180.0; 

  p_a = p_angle; 

  int itype; data->getValue(BUS_TYPE, &itype); 

  if (itype == 3) { 

    setReferenceBus(true); 

  } 

  bool lgen; 

  int i, ngen, gstatus; 

  double pg, qg; 

  if (data->getValue(GENERATOR_NUMBER, &ngen)) { 

    for (i=0; i<ngen; i++) { 

      lgen = true; 



60 
 

      lgen = lgen && data->getValue(GENERATOR_PG, &pg,i); 

      lgen = lgen && data->getValue(GENERATOR_QG, &qg,i); 

      lgen = lgen && data->getValue(GENERATOR_STAT, &gstatus,i); 

      if (lgen) { 

        p_pg.push_back(pg); 

        p_qg.push_back(qg); 

        p_gstatus.push_back(gstatus); 

      } 

    } 

  } 

} 

This version of the load function has left off additional properties, such as shunts and loads and 

some transmission parameters, but it serves to illustrate how load is suppose to work. The 

load method in the base factory class will run over all buses, get the DataCollection 

object associated with each bus and then call the PFBus::load method using the 

DataCollection object as the argument. The parameters p_sbase, p_angle, 

p_voltage are private members of PFBus. The variables corresponding to the keys 

CASE_SBASE, BUS_VOLTAGE_ANG, BUS_VOLTAGE_MAG were stored in the 

DataCollection object when the network configuration file was parsed. They are retrieved 

from this object using the getValue functions and assigned to p_sbase, p_angle, 

p_voltage. Additional internal variables are also assigned in a similar manner. The value of 

the BUS_TYPE variable can be used to determine whether the bus is a reference bus. As 

mentioned previously, the CASE_SBASE etc. are just preprocessor symbols that are defined in 

the dictionary.hpp file, which must be included in the file defining the load function. The 

dictionary.hpp file can be found in the src/parser directory of the GridPACK 

distribution. 

The variables referring to generators have a different behavior than the other variables. A bus can 

have multiple generators and these are stored in the DataCollection object with an index. 

The total number of generators on the bus is also stored in the DataCollection object with 

the key GENERATOR_NUMBER. First the number of generators is retrieved and then a loop is set 

up so that all the generator variables can be accessed. The generator parameters are stored in 

local private arrays. The loop shows how the return value of the getValue function can be 

used to verify that all three parameters for a generator were found. If they aren’t found, then the 

generator is incomplete and the generator is not added to the local data. The boolean return value 

can also be used to determine if the bus has other properties and to set internal flags and 

parameters accordingly. The load function for the PFBranch is constructed in a similar way, 

except that the focus is on extracting branch related parameters from the DataCollection 

object. 



61 
 

Both the PFBus and PFBranch classes contain an application-specific function called 

setYBus that is used to set up values in the Y-matrix. There is also a function in the powerflow 

factory class that runs over all buses and branches and calls this function. The setYBus 

function in PFBus is 

void gridpack::powerflow::PFBus::setYBus(void) 

{ 

  gridpack::ComplexType ret(0.0,0.0); 

  std::vector<boost::shared_ptr<BaseComponent> > branches; 

  getNeighborBranches(branches); 

  int size = branches.size(); 

  int i; 

  for (i=0; i<size; i++) { 

    gridpack::powerflow::PFBranch *branch 

      = dynamic_cast<gridpack::powerflow::PFBranch*> 

        (branches[i].get()); 

    ret -= branch->getAdmittance(); 

    ret -= branch->getTransformer(this); 

    ret += branch->getShunt(this); 

  } 

  if (p_shunt) { 

    gridpack::ComplexType shunt(p_shunt_gs,p_shunt_bs); 

    ret += shunt; 

  } 

  p_ybusr = real(ret); 

  p_ybusi = imag(ret); 

} 

This function evaluates the contributions to the Y-Matrix associated with buses. The real and 

imaginary parts of this number are stored in the internal variables p_ybusr and p_ybusi. The 

subroutine first creates the local variable ret and then gets a list of pointers to neighboring 

branches from the BaseBusComponent function getNeighborBranches. The function 

then loops over each of the branches and uses the dynamic cast function in C++ to convert the 

BaseComponent pointer to a PFBranch pointer. Note that the cast is necessary since the 

getNeighborBranches function only returns a list of BaseComponent object pointers. 

The BaseComponent class does not contain application-specific functions such as 

getAdmittance. The getAdmittance, getTransformer and getShunt methods 

return the contributions from transmission elements, transformers and shunts associated with the 

branch. These are accumulated into the ret variable. 



62 
 

The reason that the getAdmittance variable has no argument while both 

getTransformer and getShunt take the pointer “this” as an argument is that the 

admittance contribution from simple transmission elements is symmetric with respect to whether 

or not the calling bus is the “from” or “to” buses while the transformer and shunt contributions 

are not. This can be seen by examining the getTransformer function. 

gridpack::ComplexType 

  gridpack::powerflow::PFBranch::getTransformer( 

    gridpack::powerflow::PFBus *bus) 

{ 

  gridpack::ComplexType ret(p_resistance,p_reactance); 

  if (p_xform) { 

    ret = -1.0/ret; 

    gridpack::ComplexType a(cos(p_phase_shift),sin(p_phase_shift)); 

    a = p_tap_ratio*a; 

    if (bus == getBus1().get()) { 

      ret = ret/(conj(a)*a); 

    } else if (bus == getBus2().get()) { 

      // ret is unchanged 

    } 

  } else { 

    ret = gridpack::ComplexType(0.0,0.0); 

  } 

  return ret; 

} 

The variables p_resistance, p_reactance, p_phase_shift, and p_tap_ratio are 

all internal variables that are set based on the variables read in from using the load method or 

are set in other initialization steps. The boolean variable p_xform variable is set to true in the 

PFBranch::load method if transformer-related variables are detected in the 

DataCollection objects associated with the branch, otherwise it is false. 

The PFBranch version of the setYBus function is 

void gridpack::powerflow::PFBranch::setYBus(void) 

{ 

  gridpack::ComplexType ret(p_resistance,p_reactance); 

  ret = -1.0/ret; 

  gridpack::ComplexType a(cos(p_phase_shift),sin(p_phase_shift)); 

  a = p_tap_ratio*a; 

  if (p_xform) { 



63 
 

    p_ybusr_frwd = real(ret/conj(a)); 

    p_ybusi_frwd = imag(ret/conj(a)); 

    p_ybusr_rvrs = real(ret/a); 

    p_ybusi_rvrs = imag(ret/a); 

  } else { 

    p_ybusr_frwd = real(ret); 

    p_ybusi_frwd = imag(ret); 

    p_ybusr_rvrs = real(ret); 

    p_ybusi_rvrs = imag(ret); 

  } 

  gridpack::powerflow::PFBus *bus1 = 

    dynamic_cast<gridpack::powerflow::PFBus*>(getBus1().get()); 

  gridpack::powerflow::PFBus *bus2 = 

    dynamic_cast<gridpack::powerflow::PFBus*>(getBus2().get()); 

  p_theta = (bus1->getPhase() - bus2->getPhase()); 

} 

Note that the branch version of the setYBus function calculates different values for the Y-

matrix contribution depending on whether the first index in the Y-matrix element corresponds to 

bus 1 (the forward direction) or bus 2 (the reverse direction). These are stored in the separate 

variables p_ybusr_frwd and p_ybusi_frwd for the forward directions and 

p_ybusr_rvrs and p_ybusi_rvrs for the reverse direction. This routine also calculates 

the variable p_theta which is equal to the difference in the phase angle variable associated 

with the two buses at either end of the branch. This last variable provides an example of 

calculating a branch parameter based on the values of parameters located on the terminal buses. 

The setYBus functions described above are used in the power flow components to set some 

basic parameters. These are eventually incorporated into the Jacobian matrix and PQ vector that 

constitute the matrix and right hand side vector of the power flow equations. To build the matrix, 

it is necessary to implement the matrix size and matrix values functions in the 

MatVecInterface. The functions for setting up the matrix are discussed in detail in the 

following, the vector functions are simpler but follow the same pattern. The mode used for 

setting up the Jacobian matrix is “Jacobian”. The corresponding matrixDiagSize routine 

is 

bool gridpack::powerflow::PFBus::matrixDiagSize(int *isize, 

     int *jsize) const 

{ 

  if (p_mode == Jacobian) { 

    *isize = 2; 

    *jsize = 2; 



64 
 

    return true; 

  } else if (p_mode == YBus) { 

    *isize = 1; 

    *jsize = 1; 

    return true; 

  } 

} 

This function handles two modes, stored in the internal variable p_mode. If the mode equals 

Jacobian, then the function returns a contribution to a 2×2 matrix. In the case that the mode is 

“YBus” the function would return a contribution to a 1×1 matrix. (The Jacobian is treated as a 

real matrix where the real and complex parts of the problem are treated as separate variables, the 

Y-matrix is handle as a regular complex matrix). The corresponding code for returning the 

diagonal values is 

bool gridpack::powerflow::PFBus::matrixDiagValues(ComplexType *values) 

{ 

  if (p_mode == YBus) { 

    gridpack::ComplexType ret(p_ybusr,p_ybusi); 

    values[0] = ret; 

    return true; 

  } else if (p_mode == Jacobian) { 

    if (!getReferenceBus()) { 

      values[0] = -p_Qinj - p_ybusi * p_v *p_v; 

      values[1] = p_Pinj - p_ybusr * p_v *p_v; 

      values[2] = p_Pinj / p_v + p_ybusr * p_v; 

      values[3] = p_Qinj / p_v - p_ybusi * p_v; 

      if (p_isPV) { 

        values[1] = 0.0; 

        values[2] = 0.0; 

        values[3] = 1.0; 

      } 

      return true; 

    } else { 

      values[0] = 1.0; 

      values[1] = 0.0; 

      values[2] = 0.0; 

      values[3] = 1.0; 

      return true; 

    } 



65 
 

  } 

} 

In this implementation, the return values are of type ComplexType, even if they are real. For 

real values, the complex part is set to zero. If the mode is “YBus”, the function returns a single 

complex value. If the mode is “Jacobian”, the function checks first to see if the bus is a 

reference bus or not. If the bus is not a reference bus, then the function returns a 2×2 block 

corresponding to the contributions to the Jacobian matrix coming from a bus element. If the bus 

is a reference bus, the function returns a 2×2 identity matrix. This is a result of the fact that the 

variables associated with a reference bus are fixed. In fact, the variables contributed by the 

reference bus could be eliminated from the matrix entirely by returning false if the mode is 

“Jacobian” and the bus is a reference bus for both the matrix size and matrix values routines. 

This would also require some adjustments to the off-diagonal routines as well. There is an 

additional condition for the case where the bus is a “PV” bus. In this case one of the independent 

variables is eliminated by setting the off-diagonal elements of the block to zero and the second 

diagonal element equal to 1. The values are returned in column-major order, so values[0] 

corresponds to the (0,0) location in the 2×2 block, values[1] is the (1,0) location, 

values[2] is the (0,1) location and values[3] is the (1,1) location. 

The matrixForwardSize and matrixForwardValues routines, as well as the 

corresponding Reverse routines, are implemented in the PFBranch class. These functions 

determine the off-diagonal blocks of the Jacobian and Y-matrix. The matrixForwardSize 

routine is given by 

bool gridpack::powerflow::PFBranch::matrixForwardSize(int *isize, 

     int *jsize) const 

{ 

  if (p_mode == Jacobian) { 

    gridpack::powerflow::PFBus *bus1 

      = dynamic_cast<gridpack::powerflow::PFBus*>(getBus1().get()); 

    gridpack::powerflow::PFBus *bus2 

      = dynamic_cast<gridpack::powerflow::PFBus*>(getBus2().get()); 

    bool ok = !bus1->getReferenceBus(); 

    ok = ok && !bus2->getReferenceBus(); 

    if (ok) { 

      *isize = 2; 

      *jsize = 2; 

      return true; 

    } else { 

      return false; 

    } 



66 
 

  } else if (p_mode == YBus) { 

    *isize = 1; 

    *jsize = 1; 

    return true; 

  } 

} 

If the mode is “YBus”, the size function returns a 1×1 block for the off-diagonal matrix block. 

For the Jacobian, this function first checks to see if either end of the branch is a reference bus by 

evaluating the Boolean variable “ok”. If neither end is the reference bus then the function returns 

a 2×2 block, if one end is the reference bus then the function returns false. The false value 

indicates that this branch does not contribute to the matrix. For this system, the 

matrixReverseSize function is the same. For applications that return a non-square block, 

the reverse function will transpose the block dimensions relative to the forward direction. 

The matrixForwardValues function is 

bool gridpack::powerflow::PFBranch::matrixForwardValues( 

   ComplexType *values) 

{ 

  if (p_mode == Jacobian) { 

    gridpack::powerflow::PFBus *bus1 

      = dynamic_cast<gridpack::powerflow::PFBus*>(getBus1().get()); 

    gridpack::powerflow::PFBus *bus2 

      = dynamic_cast<gridpack::powerflow::PFBus*>(getBus2().get()); 

    bool ok = !bus1->getReferenceBus(); 

    ok = ok && !bus2->getReferenceBus(); 

    if (ok) { 

      double cs = cos(p_theta); 

      double sn = sin(p_theta); 

      values[0] = (p_ybusr_frwd*sn - p_ybusi_frwd*cs); 

      values[1] = (p_ybusr_frwd*cs + p_ybusi_frwd*sn); 

      values[2] = (p_ybusr_frwd*cs + p_ybusi_frwd*sn); 

      values[3] = (p_ybusr_frwd*sn - p_ybusi_frwd*cs); 

      values[0] *= ((bus1->getVoltage())*(bus2->getVoltage())); 

      values[1] *= -((bus1->getVoltage())*(bus2->getVoltage())); 

      values[2] *= bus1->getVoltage(); 

      values[3] *= bus1->getVoltage(); 

      bool bus1PV = bus1->isPV(); 

      bool bus2PV = bus2->isPV(); 

      if (bus1PV & bus2PV) { 



67 
 

        values[1] = 0.0; 

        values[2] = 0.0; 

        values[3] = 0.0; 

      } else if (bus1PV) { 

        values[1] = 0.0; 

        values[3] = 0.0; 

      } else if (bus2PV) { 

        values[2] = 0.0; 

        values[3] = 0.0; 

      } 

      return true; 

    } else { 

      return false; 

    } 

  } else if (p_mode == YBus) { 

    values[0] = gridpack::ComplexType(p_ybusr_frwd,p_ybusi_frwd); 

    return true; 

  } 

} 

For the “YBus” mode, the function simply returns the complex contribution to the Y-matrix. For 

the “Jacobian” mode, the function first determines if either end of the branch is connected to 

the reference bus. If it is, then the function returns false and there is no contribution to the 

Jacobian. If neither end of the branch is the reference bus then the function evaluates the 4 

elements of the 2×2 contribution to the Jacobian coming from the branch. To do this, the branch 

needs to get the current values of the voltages on the buses at either end by using the 

getVoltage accessor functions that have been defined in the PFBus class. Finally, if one end 

or the other of the branch is a PV bus, then some variables need to be eliminated from the 

equations. This can be done by setting appropriate values in the 2×2 block equal to zero. 

The matrixReverseValues function is similar to the matrixForwardValues functions 

with a few key differences. 1) the variables p_ybusr_rvrs and p_ybusi_rvrs are used 

instead of p_ybusr_frwd and p_ybusi_frwd 2) instead of using cos(p_theta) and 

sin(p_theta) the function uses cos(-p_theta) and sin(-p_theta) since p_theta 

is defined as difference in phase angle on bus 1 minus the difference in phase angle on bus 2 and 

3) the values that are set to zero in the conditions for PV buses are transposed. The PV 

conditions are the same as the forward case if both bus 1 and bus 2 are PV buses, if only bus 1 is 

a PV bus then values[2] and values[3] are zero and if only bus2 is a PV bus then 

values[1] and values[3] are zero. 



68 
 

The functions for setting up vectors are similar to the corresponding matrix functions, although 

they are a bit simpler. The vector part of the MatVecInterface contains one function that 

does not have a counterpart in the set of matrix functions and that is the setValues function. 

This function can be used to push values in a vector object back into the buses that were used to 

generate the vector. For the Newton-Raphson method used to solve the power flow equations, it 

is necessary, at each iteration, to push the current solution back into the buses so they can be 

used to evaluate new Jacobian and right hand side vectors. The solution vector contains the 

current increments to the voltage and phase angle. These are written back to the buses using the 

function 

void gridpack::powerflow::PFBus::setValues( 

    gridpack::ComplexType *values) 

{ 

  p_a -= real(values[0]); 

  p_v -= real(values[1]); 

  *p_vAng_ptr = p_a; 

  *p_vMag_ptr = p_v; 

} 

This function is paired with a mapper that is used to create a vector with the same pattern of 

contributions. If for example, the matrix equation Ax = b is being solved, then the mapper used 

to create the right hand side vector b should be used to push results back onto the buses using the 

mapToBus method. The setValues method above takes the contributions from the solution 

vector and uses then to decrement the internal variables p_a (voltage angle) and p_v (voltage 

magnitude). The new values of p_a and p_v are then assigned to the buffers p_vAng_ptr and 

p_vMag_ptr so that they can be exchanged with other buses. This is discussed below. 

The two routines that need to be created in the PFBus class to copy data to ghost buses are both 

simple. There is no need to create corresponding routines in the PFBranch class since branches 

do not exchange data in the power flow calculation. Two values need to be exchanged between 

buses, the current voltage angle and the current voltage magnitude. This requires a buffer that is 

the size of two doubles so the getXCBufSize function is written as 

int gridpack::powerflow::PFBus::getXCBufSize(void) 

{ 

  return 2*sizeof(double); 

} 

The setXCBuf assigns the buffer created in the base factory setExchange function to 

internal variables used within the PFBus component. It has the form 

void gridpack::powerflow::PFBus::setXCBuf(void *buf) 



69 
 

{ 

  p_vAng_ptr = static_cast<double*>(buf); 

  p_vMag_ptr = p_vAng_ptr+1; 

  *p_vAng_ptr = p_a; 

  *p_vMag_ptr = p_v; 

} 

The buffer created in the setExchange routine is split between the two internal pointers 

p_vAng_ptr and p_vMag_ptr. These are then initialized to the current values of p_a and 

p_v. Whenever the updateBuses routine is called, the buffers on the ghost buses are 

refreshed with the current values of the variables from the processes that own the corresponding 

buses. Note that both the getXCBufSize and the setXCBuf routines are only called during 

the setExchange routine. They are not called during the actual bus updates. 

One final function in the PFBus and PFBranch class that is worth taking a brief look at is the 

set mode function. This function is used to set the internal p_mode variable that is defined in 

both classes. The PFMode enumeration, which contains both the “YBus” and “Jacobian” 

modes, is defined within the gridpack::powerflow namespace. The setMode function for both 

buses and branches has the form 

void gridpack::powerflow::PFBus::setMode(int mode) 

{ 

  p_mode = mode; 

} 

This function is triggered on all buses and branches if the setMode method in the factory class 

is called. 

Once the PFBus and PFBranch classes have been defined, it is possible to define a 

PFNetwork using a typdef statement. This can be done using the line 

typedef network::BaseNetwork<PFBus, PFBranch > PFNetwork; 

in the header file declaring the PFBus and PFBranch classes. This type can then be used in 

other powerflow files that need to create objects from templated classes. 

The discussion above summarizes many of the important functions in the PFBus and 

PFBranch classes. Additional functions are included in these classes that are not discussed 

here, but the basic principles involved in implementing the remaining functions have been 

covered.  

The first part of creating a new application is writing the network component classes. The second 

part is implementing the application-specific factory. For the power flow application, this is the 



70 
 

PFFactory class, which inherits from the BaseFactory class. Most of the important 

functionality in PFFactory is derived from the BaseFactory class and is used without 

modification, but several application-specific functions have been added to PFFactory that are 

used to set internal parameters in the network components. As an example, consider the 

setYBus function 

void gridpack::powerflow::PFFactory::setYBus(void) 

{ 

  int numBus = p_network->numBuses(); 

  int numBranch = p_network->numBranches(); 

  int i; 

  for (i=0; i<numBus; i++) { 

    p_network->getBus(i).get()->setYBus(); 

  } 

  for (i=0; i<numBranch; i++) { 

    p_network->getBranch(i).get()->setYBus(); 

  } 

} 

This function loops over all buses and branches and invokes the setYBus method in the 

individual PFBus and PFBranch objects. The first two lines in the factory setYBus method 

get the total number of buses and branches on the process. A loop over all buses on the process is 

initiated and a pointer to the bus object is obtained via the getBus bus method in the 

BaseNetwork class. This pointer is returned as a pointer of type PFBus, so it is not necessary 

to do a dynamic cast on it and the setYBus method, which is not part of the base class, can be 

invoked. The same set of steps is then repeated for the branches. The factory can be used to 

create other methods that invoke functions on buses and/or branches. Most of these functions 

follow the same general form as the setYBus method just described. 

The last part of building an application is creating the top level application driver that actually 

instantiates all the objects used in the calculation and controls the program flow. Running the 

code is broken up into two parts. The first is creating a main program and the second is creating 

the application driver. The main routine is primarily responsible for initializing the 

communication libraries and creating the application object, the application object then controls 

the application itself. The main program for the powerflow application is 

main(int argc, char **argv) 

{ 

  gridpack::parallel::Environment env(argc,argv); 

  gridpack::math::Initialize(); 

 



71 
 

  gridpack::powerflow::PFApp app; 

  app.execute(); 

 

  gridpack::math::Finalize(); 

} 

The first line in this program creates a variable of type Environment that initializes the MPI 

and GA communication libraries (the initialization happens in the constructor, so all that is 

necessary is to create the variable). The second line initializes the math library, which, in turn, 

calls the initialization routines of whatever library the math module is built on. The code then 

instantiates a power flow application object and calls the execute method for this object. The 

remainder of the power flow application is contained in the PFApp::execute method. 

Finally, when the application has finished running, the main program cleans up the 

communication and math libraries. The communication libraries are handled when the env 

variable goes out of scope and calls the Environment destructor. The main reason for 

breaking the code up in this way instead of including the execute function as part of main is to 

force the invocation of all the destructors in the GridPACK objects used to implement the 

application. Otherwise, these destructors get called after the communication libraries have been 

finalized and the program will fail to exit cleanly. 

The top level control of the application is embedded in the power flow execute method. The 

execute method starts off with the code 

  gridpack::parallel::Communicator world; 

  boost::shared_ptr<PFNetwork> network(new PFNetwork(world)); 

 

  gridpack::utility::Configuration *config 

      = gridpack::utility::Configuration::configuration(); 

  config->open("input.xml",world); 

  gridpack::utility::Configuration::Cursor *cursor; 

  cursor = config->getCursor("Configuration.Powerflow"); 

  std::string filename; 

  if (!cursor->get("networkConfiguration", &filename)) { 

    printf("No network configuration specified\n"); 

    return; 

  } 

  gridpack::parser::PTI23_parser<PFNetwork> parser(network); 

  parser.parse(filename.c_str()); 

   

  network->partition(); 



72 
 

The first two lines create a communicator for this application and use it to instantiate a 

PFNetwork object (note that this is really a BaseNetwork template class that is instantiated 

using the PFBus and PFBranch classes as template arguments). The network object exists but 

has no buses or branches associated with it. The next few lines get an instance of the 

configuration object and use this to open the input.xml file. This filename has been 

hardwired into this implementation but it could be passed in as a runtime argument, if desired. 

The code then creates a Cursor object and initializes this to point into the 

Configuration.Powerflow block of the input.xml file. The cursor can then be used to 

get the contents of the networkConfiguration block in input.xml, which corresponds 

to the name of the network configuration file containing the power grid network. This file is 

assumed to use the PSS/E version 23 format. After getting the file name, the code creates a 

PTI23_parser object and passes in the current network object as an argument. When the 

parse method is called, the parser reads in the file specified in filename and uses that to add 

buses and branches to the network object. At this point, the network has all the bus and branches 

from the configuration file, but no ghost buses or branches exist and buses and branches are not 

distributed in an optimal way. Calling the partition method on the network then distributes the 

buses and branches and adds appropriate ghost buses and branches. 

The next set of calls initialize the network components and prepare the network for computation. 

  gridpack::powerflow::PFFactory factory(network); 

  factory.load(); 

 

  factory.setComponents(); 

  factory.setExchange(); 

   

  network->initBusUpdate(); 

 

  factory.setYBus(); 

The first call creates a PFFactory object and instantiates it with a reference to the current 

network. PFFactory is defined as an instance of the BaseFactory class using a 

PFNetwork as the template argument. The next line calls the BaseFactory load method 

which invokes the component load method on all buses and branches. These use data from the 

DataCollection objects to initialize the corresponding bus and branch objects. Note that 

when the partition function creates the ghost bus and branch objects, it copies the associated 

DataCollection objects to these ghosts so the parameters from the network configuration 

file are available to instantiate all objects in the network. There is no need to do a data exchange 

at this point in the code in order to get current values on the ghost objects. 



73 
 

The next two calls are also implemented as BaseFactory methods. The setComponents 

method sets up pointers in the network components that point to neighboring branches and buses 

(in the case of buses) and terminal buses (in the case of branches). It is also responsible for 

setting up internal indices that are used by the mapper functions to create matrices and vectors. 

The setExchange method sets up the buffers that are used to exchange data between locally 

owned buses and branches and their corresponding ghost images on other processors. The call to 

initBusUpdate creates internal data structures that are used to exchange bus data between 

processors and the final factory call to setYBus evaluates the Y-matrix contributions from all 

network components. The network is fully initialized at this point and ready for computation. 

The next calls create the Y-matrix and the matrices used in the Newton-Raphson iteration loop. 

  factory.setMode(YBus); 

  gridpack::mapper::FullMatrixMap<PFNetwork> mMap(network); 

  boost::shared_ptr<gridpack::math::Matrix> Y = mMap.mapToMatrix(); 

 

  factory.setSBus(); 

  factory.setMode(RHS); 

  gridpack::mapper::BusVectorMap<PFNetwork> vMap(network); 

  boost::shared_ptr<gridpack::math::Vector> PQ = vMap.mapToVector(); 

 

  factory.setMode(Jacobian); 

  gridpack::mapper::FullMatrixMap<PFNetwork> jMap(network); 

  boost::shared_ptr<gridpack::math::Matrix> J = jMap.mapToMatrix(); 

  boost::shared_ptr<gridpack::math::Vector> X(PQ->clone()); 

The first call sets the internal p_mode variable in all network components to “YBus”. The 

second call constructs a FullMatrixMap object mMap and the third call uses the 

mapToMatrix method to generate a Y-matrix based on the “YBus” mode. The factory then 

calls the setSBus method that sets some additional network component parameters (again, by 

looping over all buses and invoking a setSBus method on each bus). The next three lines set 

the mode to “RHS”, create a BusVectorMap object and create the right hand side vector in the 

powerflow equations using the mapToVector method. This builds the vector based on the 

“RHS” mode. The next three lines create the Jacobian using the same pattern as for the Y-matrix. 

The mode gets set to “Jacobian”, another FullMatrixMap object is created and this is used 

to create the Jacobian using the mapToMatrix method. Two separate mappers are used to 

create the Y-matrix and the Jacobian. This is required unless there is some reason to believe that 

the “YBus” and “Jacobian” modes generate matrices with the same dimensions and exactly 

the same fill pattern. This is not generally the case, so different mappers should be created for 



74 
 

each matrix in the problem. The last line creates a new vector by cloning the PQ vector. The X 

vector has the same dimension and data layout as PQ so it could be used with the vMap object. 

Once the vectors and matrices for the problem have been created and set to their initial values, it 

is possible to start the Newton-Raphson iterations. The code to set up the first Newton-Raphson 

iteration is 

  double tolerance = 1.0e-6; 

  int max_iteration = 100; 

  ComplexType tol; 

 

  gridpack::math::LinearSolver solver(*J); 

  solver.configure(cursor); 

 

  int iter = 0; 

 

  X->zero();  

  solver.solve(*PQ, *X); 

  tol = PQ->normInfinity(); 

The first three lines define some parameters used in the Newton-Raphson loop. The tolerance 

and maximum number of iterations are hardwired in this example but could be made 

configurable via the input deck using the Configuration class. The next line creates a linear 

solver based on the current value of the Jacobian, J. The call to the configure method allows 

configuration parameters in the input file to be passed directly to the newly created solver. The 

iteration counter is set to zero and the value of X is also set to zero. The linear solver is called 

with PQ as the right hand side vector and X as the solution. An initial value of the tolerance is set 

by evaluating the infinity norm of PQ. The calculation can now enter the Newton-Raphson 

iteration loop 

  while (real(tol) > tolerance && iter < max_iteration) { 

    factory.setMode(RHS); 

    vMap.mapToBus(X); 

    network->updateBuses(); 

 

    vMap.mapToVector(PQ); 

    factory.setMode(Jacobian); 

    jMap.mapToMatrix(J); 

 

    X->zero(); 

    solver.solve(*PQ, *X); 



75 
 

    tol = PQ->normInfinity(); 

    iter++; 

  } 

This code starts by pushing the values of the solution vector back on to the buses using the same 

mapper that was used to create PQ. The network then calls the updateBus routine so that the 

ghost buses have new values of the voltage angle and magnitude parameters from the solution 

vector. New values of the Jacobian and right hand side vector are created based on the solution 

values from the previous iteration. Note that since J and PQ already exist, the mappers are just 

overwriting the old values instead of creating new data objects. The linear solver is already 

pointing to the Jacobian matrix so it automatically uses the new Jacobian values when 

calculating the solution vector X. If the norm of the new PQ vector is still larger than the 

tolerance, the loop goes through another iteration. This continues until the tolerance condition is 

satisfied or the number of iterations reaches the value of max_iteration. 

If the Newton-Raphson loop converges, then the calculation is essentially done. The last part of 

the calculation is to write out the results. This can be accomplished using the code 

  gridpack::serial_io::SerialBusIO<PFNetwork> busIO(128,network); 

  busIO.header("\n   Bus Voltages and Phase Angles\n"); 

  busIO.header("\n   Bus Number      Phase Angle"); 

  busIO.header("      Voltage Magnitude\n"); 

  busIO.write(); 

The first line creates a serial bus IO object that assumes that no line of output will exceed more 

than 128 characters. The next three lines write out the header for the output data and the last line 

writes a listing of data from all buses. The data from each bus is generated by the 

serialWrite method defined in the PFBus class. A similar set of calls can be used to write 

out data from the branches. This completes the execute method and the overview of the power 

flow application. 

Advanced Functionality 
The core operations supported by GridPACK have been described above and these can be used 

in to create many different kinds of power grid applications. This section will describe features 

that are more advanced but can be extremely useful in certain cases. Additional capabilities of 

the GridPACK framework include 

 Communicators and task managers that can be used to create multiple levels of 

parallelism and implement dynamic load balancing schemes 

 A generalized matrix-vector interface to handle applications where the dependent and 

independent variables are associated with both buses and branches. The 



76 
 

MatVecInterface described above can only be used for systems where the 

dependent and independent variables are associated solely with buses 

 A “slab” matrix-vector interface for creating matrices based on multiple values on each 

of the network components. This can be used for algorithms such as Kalman filter 

 Profiling and error handling capabilities 

 A hashed data distribution capability that can be used to direct network data to the 

processors that own the corresponding network components 

 This functionality is described in more detail in the following sections. 

Communicators 

The subject of communicators has already been mentioned in the context of the constructor for 

the BaseNetwork class. This section will describe communicators in more detail and will 

show how the GridPACK communicators can be used to partition a large calculation into 

separate pieces that all run concurrently. A communicator can crudely be though of as a 

communication link between a group of processors. Whenever a process needs to communicate 

with another process it needs to specify the communicator over which that communication will 

occur. When a parallel job is started, it creates a “world” communicator to which all processes 

implicitly belong. Any process can communicate with any other process via the world 

communicator. Other communicators can be created by an application and it is possible for a 

process to belong to multiple communicators. The concept of communicators is particularly 

important for restricting the scope of “global” operations. These are operations that require every 

process in the communicator to participate. Failure of a process to participate in the operation 

usually results in the calculation stalling because multiple processors are waiting for a 

communication from a process that is not part of the global operation. A program can remain in 

this state indefinitely. Many of the module functions in GridPACK represent global operations 

and contain imbedded calls that act collectively on a communicator. In order for two separate 

calculations to proceed concurrently, they must be run on disjoint sets of processors using 

separate communicators. 

The use of communicators to create multiple concurrent parallel tasks within an application is 

usually straightforward to implement but it is frequently much more confusing to understand. A 

diagram of a set of 16 processes that are divided into 4 groups each containing 4 processes is 

shown schematically in Figure 9. In this example, each subgroup could potentially execute a 

separate parallel task within the larger parallel calculation. 



77 
 

 

Figure 9. Schematic diagram illustrating the use of multiple communicators 

Global operations on the world communicator involve all 16 processes, global operations on one 

of the task communicators just involve the 4 processes in the group used to define the task 

communicator. If a network object is created on one of the task communicators, then a global 

operation such as the bus update only occurs between the 4 processes in the task communicator. 

The network object is, in a certain sense, “invisible” to the processes outside that communicator. 

If a network is created on a sub-communicator, then all objects derived from the network, such 

as factories, parsers, serial IO objects, etc. are also associated with the same sub-communicator. 

The communicator supports some basic operations that are commonly used in parallel 

programming. GridPACK has been designed to minimize the amount of explicit communication 

that must be handled by application developers, but it is occasionally useful to have access to 

standard communication protocols in applications. In particular, it is useful to be able to divide a 

given communicator into a set of non-overlapping sub-communicators. The basic operations 

supported by the GridPACK communicator class are described below. 

The GridPACK Communicator class is in the gridpack::parallel namespace. The 

constructor for this class creates a copy of the world communicator. The constructor has the form 

Communicator(void) 

and takes no arguments. Two basic functions associated with communicators are 



78 
 

int size(void) const 

and 

int rank(void) const 

The first function returns the number of processors in the communicator and the second returns 

the index of the processor within the communicator. If the communicator contains N processes, 

then the rank will be an integer ranging from 0 to N-1. The process corresponding to rank 0 is 

often referred to as the head process or head node for the communicator. Note that if a process 

belongs to more than one communicator, its rank may differ depending on which communicator 

is being referred to. Information on size and rank is used extensively when explicitly 

programming in parallel. GridPACK has tried to abstract much of this programming so that 

developers do not need to pay attention to it, but it is still occasionally useful to be able to access 

these numbers. For example, the header function in the SerialIO classes is essentially equivalent 

to the following code fragment 

Communicator comm; 

char buf[128]; 

sprint(buf,“My message\n”); 

if (comm.rank() == 0) { 

  printf(“%s”,buf); 

} 

This code creates some output. If the condition was not there, the code would print out the 

message from all N processors in the world communicator and N copies of “My message” would 

appear in the output. The condition restricting the print statement to process 0 guarantees that the 

message appears only once. 

A more important use of communicators is to divide up the world communicator into separate 

communicators that can be used to run independent parallel calculations. This is known as multi-

level parallelism. Two functions can be used to split up an existing communicator into sub-

communicators. The first is split 

Communicator split(int color) const 

This function divides the calling communicator into sub-communicators based on the color 

variable. All processors with the same value of the color variable end up in the same 

communicator. Thus, if 16 processors on the world communicator are divided up such that 

processes 0-3 are color 0, processes 4-7 are color 1, processes 8-11 are color 2 and processes 12-

15 are color 3, then split will generate 4 sub-communicators from the world communicator such 

that 0-3 are on one communicator, 4-7 are on another communicator and so on. Note that this 

function divides the communicator completely into complementary pieces with all processes in 



79 
 

the old communicator ending up in a new communicator and no process ending up in more than 

one new communicator. 

A second function that can be used to decompose a communicator into sub-communicators is 

divide. This function has the form 

Communicator divide(int nsize) const 

Each sub-communicator returned by this function contains at most nsize processes. The 

function will try and create as many communicators of size nsize as possible. For example, if 

the calling communicator contains 10 processes and nsize is set to 4, then this function will 

create 3 sub-communicators, two of which contain 4 processors and one containing 2 processors. 

An example of how communicators can be used to create multiple levels of parallelism is 

illustrated in Figure 10. The example has 8 tasks that can be evaluated independently. The first 

row in Figure 10 shows four processors. Two of the 8 tasks are run on each processor so if each 

task has been parallelized then it needs to run on a communicator with only 1 processor in it. The 

second row shows the same calculation running on 8 processors. In this case, each processor 

only has 1 task associated with it but each task is still running on a single processor. If the tasks 

have not been parallelized, then this is as far as you can go. However, if the tasks have been 

parallelized, then you can move on to the configuration shown in the third line using 16 

processors. In this case, the system has been divided into 8 groups, each containing two 

processors. Each group has its own separate subcommunicator and each task can be run in 

parallel on two processors. This gives additional speed-up over what can be achieved by simply 

distributing tasks to separate processors. 

             



80 
 

Figure 10. Schematic diagram of 8 tasks evaluated using multiple levels of parallelism. The first 

row represents 8 tasks on 4 processors, the second row is 8 tasks on 8 processors and the third 

row is 8 tasks running on 16 processors. 

Additional functions are available for communicators that support basic parallel computing tasks. 

The objective of GridPACK is to abstract most aspects of parallel computing so that users do not 

need to deal with them directly, but there are some tasks, particularly those associated with 

collecting and organizing data, that are not difficult to program but are difficult to generalize. 

Some support for simple parallel operations is useful in these cases. The following operations 

can be used to sum data across all processors 

void sum(float *x, int nvals) const 

void sum(double *x, int nvals) const 

void sum(int *x, int nvals) const 

void sum(long *x, int nvals) const 

void sum(ComplexType *x, int nvals) const 

The array x holds the values to be summed and nvals is the number of values in x. This 

operation can be used to compute the total of some quantity after partial sums have been 

calculated on each processor. It can also be used to collect an array of values across a collection 

of processors by having each processor compute a portion of an array and then using the sum 

operation to create a complete copy of the array on all processors. 

Maximum and minimum values can be calculated using the functions 

void max(float *x, int nvals) const 

void max(double *x, int nvals) const 

void max(int *x, int nvals) const 

void max(long *x, int nvals) const 

 

void min(float *x, int nvals) const 

void min(double *x, int nvals) const 

void min(int *x, int nvals) const 

void min(long *x, int nvals) const 

Again, a global maximum or minimum can be calculated by first computing the local maximum 

or minim on each processor and then evaluating it across processors.  

One other common parallel construct that may be useful in some contexts is the barrier or 

synchronization function. In GridPACK, this is available as the function 

void sync() const 



81 
 

The sync function does not allow any processor in the communicator to proceed beyond this 

call until all processors in the communicator have reached the call. This is used in some parallel 

programming situations to guarantee a consistent state across all processors.  In general, there 

should be relatively little need for this call in GridPACK. See, however, the comment below at 

the end of the section on GlobalStore. 

Task Manager 

The task manager functionality is designed to parcel out tasks on a first come, first serve basis to 

processes in a parallel application. Each processor can request a task ID from the task manager 

and based on the value it receives, it will execute a block of work corresponding to the ID. The 

task manager guarantees that all IDs are sent out once and only once. The unique feature of the 

task manager is that if the tasks take unequal amounts of time, then processes with longer tasks 

will make fewer requests to the task manager than processes that have relatively short tasks. This 

leads to an automatic dynamic load balancing of the application that can substantially improve 

performance. The task manager also supports multi-level parallelism and can be used in 

conjunction with the sub-communicators described above to implement parallel tasks within a 

parallel application. An example of the use of communicators and task managers to create a code 

that uses multiple levels of parallelism can be found in the contingency analysis application that 

is part of the GridPACK distribution. 

Task managers use the gridpack::parallel namespace. Task managers can be created 

either on the world communicator or on a subcommunicator. Two constructors are available. 

TaskManager(void) 

 

TaskManager(Communicator comm) 

The first constructor must be called on all processors in the system and creates a task manager on 

the world communicator, the second is called on all processors within the communicator comm. 

Once the task manager has been created, the number of tasks must be set. This can be done with 

the function 

void set(int ntask) 

where the variable ntask corresponds to the total number of tasks to be performed. This call is 

collective on all processes in the communicator and each process must use the same value of 

ntask. The task IDs returned by the task manager will range from 0 to ntask-1. 

Once the task manager has been created, task IDs can be retrieved from the task manager using 

one of the functions 

bool nextTask(int *next) 

 



82 
 

bool nextTask(Communicator &comm, int *next) 

The first function is called on a single processor and returns the task ID in the variable next. 

The second is called on the communicator comm by all processors in comm and returns the same 

task ID on all processors (note that if all processors in comm called the first nextTask 

function, each processor in comm would end up with a different task ID). The communicator 

argument in the second nextTask call should be a subcommunicator relative to the 

communicator that was used to create the task manager. Both functions return true if the task 

manager has not run out of tasks, otherwise they return false and the value of next is set to -1. 

The task manager also has a function 

void printStats(void) 

that can be used to print out information to standard out about how many tasks were assigned to 

each process. 

A simple code fragment shows how communicators and task managers can be combined to 

create an application exhibiting multi-level parallelism. 

  gridpack::parallel::Communicator world 

  int grp_size = 4; 

  gridpack::parallel::Communicator task_comm = world.divide(grp_size); 

  App app(task_comm); 

  gridpack::parallel::TaskManager taskmgr; 

  taskmgr.set(ntasks); 

  int task_id; 

  while(taskmgr.nextTask(task_comm, &task_id) { 

    app.execute(task_data[task_id]); 

  } 

This code divides the world communicator into sub-communicators containing at most 4 

processes. An application is created on each task communicator and a task manager is created on 

the world group. The task manager is set to execute ntasks tasks and a while loop is created to 

execute each task. Each call to nextTask returns the same value of task_id to the processors 

in task_comm. This ID is used to index into an array task_data of data structures that 

contain the input data necessary to execute the task. The size of task_data corresponds to the 

value of ntasks. When the task manager runs out of tasks, the loop terminates. Note that this 

structure does not guarantee that tasks are mapped to processors in any fixed order. There is no 

guarantee that task 0 is executed on process 0 or that some process will execute a given number 

of tasks. If one task takes significantly longer than other tasks then it is likely that other 

processors will pick up work from the processors executing the longer task. This balances the 



83 
 

workload if each process is involved in multiple tasks. Once the workload drops to 1 task per 

process, this advantage is lost. 

Timers 

Profiling applications is an important part of characterizing performance, identifying bottlenecks 

and proposing remedies. Profiling in a parallel context is also extremely tricky. Unbalanced 

applications can lead to incorrect conclusions about performance when load imbalance in one 

part of the application appears as poor performance in another part of the application. This 

occurs because the part of the application that appears slow has a global operation that acts as an 

accumulation point for load imbalance. Nevertheless, the first step in analyzing performance is to 

be able to time different parts of the code. GridPACK provides a timer functionality that can help 

users do this. These modules are designed to do relatively coarse-grained profiling, they should 

not be used to time the inside of computationally intensive loops. 

GridPACK contains two different types of timers. The first is a global timer that can be used 

anywhere in the code and accumulates all results back to the same place for eventual display. 

Users can get a copy of this timer from any point in the calculation. The second timer is created 

locally and is designed to only time portions of the code. The second class of timers was created 

to support task based parallelism where there was an interest in profiling individual tasks instead 

of getting timing results averaged over all tasks. Both timers can be found in the 

gridpack::utility namespace. 

The CoarseTimer class represents a timer that is globally accessible from any point in the 

code. A pointer to this timer can be obtained by calling the function 

static CoarseTimer *instance() 

A category within the timer corresponds to a set of things that are to be timed. A new category in 

the timer can be created using the command 

int createCategory(const std::string title) 

This command creates a category that is labeled by the name in the string title. The function 

returns an integer handle that can be used in subsequent timing calls. For example, suppose that 

all calls to function1 within a code need to be timed. The first step is to get an instance of the 

timer and create the category “Function1” 

gridpack::utility::CoarseTimer *timer = 

  gridpack::utilitity::CoarseTimer::instance(); 

int t_func1 = timer->createCategory(“Function1”); 



84 
 

This code gets a copy of the timer and returns an integer handle t_func1 corresponding to this 

category. If the category has already been created, then createCategory returns a handle to 

the existing category, otherwise it adds the new category to the timer. 

Time increments can be accumulated to this category using the functions 

void start(const int idx) 

void stop(const int idx) 

The start command begins the timer for the category represented by the handle idx and 

stop turns the timer off and accumulates the increment. 

At the end of the program, the timing results for all categories can be printed out using the 

command 

void dump(void) const 

The results for each category are printed to standard out. An example of a portion of the output 

from dump for a power flow code is shown below. 

    Timing statistics for: Total Application 

        Average time:               14.7864 

        Maximum time:               14.7864 

        Minimum time:               14.7863 

        RMS deviation:               0.0000 

    Timing statistics for: PTI Parser 

        Average time:                0.1553 

        Maximum time:                1.2420 

        Minimum time:                0.0000 

        RMS deviation:               0.4391 

    Timing statistics for: Partition 

        Average time:                2.8026 

        Maximum time:                2.9668 

        Minimum time:                1.7142 

        RMS deviation:               0.4398 

    Timing statistics for: Factory 

        Average time:                1.2424 

        Maximum time:                1.2540 

        Minimum time:                1.2336 

        RMS deviation:               0.0056 

    Timing statistics for: Bus Update 

        Average time:                0.0019 

        Maximum time:                0.0025 

        Minimum time:                0.0016 

        RMS deviation:               0.0003 

 



85 
 

For each category, the dump command prints out the average time spent in that category across 

all processors, the minimum and maximum times spent on a single processor and the RMS 

standard deviation from the mean across all processors. It is also possible to get more detailed 

output from a single category. The commands 

void dumpProfile(const int idx) const 

void dumpProfile(const std::string title) 

can both be used to print out how much time was spent in a single category across all processors. 

The first command identifies the category through its integer handle, the second via its name. 

Some other timer commands also can be useful. The function 

double currrentTime() 

returns the current time in seconds (if you want to do timing on your own). If you want control 

profiling in different sections of the code the command 

void configureTimer(bool flag) 

can be used to turn timing off (flag = false) or on (flag = true). This can be used to 

restrict timing to a particular section of code and can be used for debugging and performance 

tuning. 

In addition to the CoarseTimer class, there is a second class of timers called LocalTimer. 

LocalTimer supports the same functionality as CoarseTimer but differs from the 

CoarseTimer class in that LocalTimer has a conventional constructor. When an instance of 

a local timer goes out of scope, the information associated with it is destroyed. Apart from this, 

all functionality in LocalTimer is the same as CoarseTimer. The LocalTimer class was 

created to profile individual tasks in applications such as contingency analysis. Each contingency 

can be profiled separately and the results printed to a separate file. The only functions that are 

different from the CoarseTimer functions are the functions that print out results. The 

dumpProfile functions are not currently supported and the dump command has been 

modified to 

void dump(boost::shared_ptr<ofstream> stream) const 

This function requires a stream pointer that signifies which file the data is written to. 

Exceptions 

The math module has been implemented so that failures throw exceptions. These can be caught 

by other parts of code and managed so that code does something more graceful than simply crash 

when an error is encountered. For example, a calculation that fails because the solver throws an 

exception might try to run again using a different solver. In a contingency analysis calculation, a 



86 
 

contingency that fails because the solver did not converge can be marked as a failed calculation 

and the code can proceed to the next contingency. This allows the code to evaluate all 

contingencies even if some do not converge. 

A solver exception can be handled using the following construct 

    LinearSolver solver(*A); 

    // User code... 

    try { 

      solver.solve(*B,*X); 

    } catch (const gridpack::Exception e) { 

      // Do something to manage exception 

    } 

If the solve command fails, it throws a gridpack::Exception that can then be managed by 

the code. This could consist of simply exiting cleanly or the code could try and take corrective 

action by using a different algorithm. 

Exceptions can also be added to error conditions that are detected in user written code so that the 

error can be picked up in some other part of the application and managed there. Exceptions have 

two constructors that can be used in applications 

Exception(const std::string msg) 

Exception(const char* msg) 

where msg is a text string describing the error that was encountered. This message can be read 

later using the function 

const char* what() 

Exceptions are usually created in user code using the following syntax 

    if (...some_condition_is_violated...) { 

      throw gridpack::Exception(“Describe error condition”); 

    } 

The error message can be printed out to standard out (or standard error) by catching the 

exception and calling what 

    try { 

       // Some action 

    } catch (const gridpack::Exception e) { 

      std::cout << e.what() << std::endl; 

      // After printing error take some action 



87 
 

    } 

Hash Distribution Module 

The hash distribution functionality provides a simple mechanism for quickly distributing data 

associated with individual buses and branches to the processors that own those buses and 

branches. This situation can come up in several contexts, particularly when network data is 

distributed across multiple files. For example, the information on measurements in the state 

estimation calculation is contained in a file that is distinct from the file that holds the network 

configuration. The program starts by reading in the network configuration and partitioning it. 

The program next reads in the measurements, but there is no simple map between the 

measurements, each of which is associated with either a branch or a bus, and the distributed 

network. Even if the measurements are read in before the network is distributed, there is still no 

simple map between measurements and their corresponding buses and branches, since some 

components may have no measurements associated with them and other components may have 

multiple measurements. Moving this data to the right processor and providing a simple way of 

mapping it to the correct bus or branch on that processor is a non-trivial task. 

The HashDistribution module is a templated class that assumes that the data that is to be 

sent to the buses and branches are held in user-defined structs. It is contained in the 

gridpack::hash_distr namespace. The structs used for branches can be different from 

the structs used for buses. If we designate the bus and branch structs by the names BusData 

and BranchData then the constructor for the HashDistribution class has the form 

HashDistribution<MyNetwork, BusData, BranchData> 

        (const boost::shared_ptr<MyNetwork> network) 

Both the BusData and BranchData structs must be specified when creating a new 

HashDistribution object, even if only bus or branch data is actually being used. If you are 

just using bus data you can simply repeat the BusData type in the branch slot without causing 

any problems. Similarly, you can also use BranchData in both slots if you are only interested 

in moving data to branches. 

The following command can be used to move bus data to the processors that actually hold the 

corresponding buses 

void distributeBusValues(std::vector<int> &keys, 

                         std::vector<BusData> &values) 

The integer array “keys” holds the original indices of the buses that the data in the vector 

“values” is supposed to map to. The keys and values vectors should be the same and the 

data in the values array at index n should be mapped to the bus indicated by the original index 

stored at the same location in the keys array. This function is collective and must be called on 



88 
 

all processors. The amount of data on each processor does not need to be the same and some 

processors, or even most of them, can have no data (it is still necessary to call the 

distributeBusValues function across all processors even if some processors contain no 

data). It also possible that the same original index can appear multiple times in the keys array, 

i.e. multiple pieces of data can map to the same bus. On output, the values array contains all the 

data objects that map to buses on that processor and the keys array contains the local indices of 

the bus. This will include data that maps to ghost buses so a piece of data may map to more than 

one processor in a distributed system. 

An analogous command can be used to distribute data to branches. It has the form 

void distributeBranchValues(std::vector<std::pair<int,int> > &keys, 

                            std::vector<int> &branch_ids, 

                            std::vector<BranchData> &values) 

Branches are uniquely identified by the buses at each end of the branch, so the keys array in 

this case is a vector consisting of index pairs representing the original indices of these buses. The 

values array contains the data to be distributed to the branches and the branch_ids array 

contains the local index of the branch on output. Unlike the command to distribute bus values, 

the keys array cannot be reused to store the destination index of the data. Similar to buses, 

multiple data items can be mapped to the same branch. 

String Utilities 

At some point, users may want to develop their own parsers for reading in information in 

external files. The StringUtils class is contained in the gridpack::utility namespace 

and is designed to provide some useful string manipulation routines that can be used to parse 

individual lines of a file. Other capabilities are available in standard C routines such as strcmp 

and the Boost libraries also have many useful routines. The StringUtils class is just a 

convenient container for different string manipulation methods; it has no internal state. 

Some basic routines for modifying strings so that they can be compared with other strings are 

void trim(std::string &str) 

which can be used to remove white space at the beginning and end of a string. This function will 

also convert all tabs and carriage returns to white space before trimming the white space at the 

ends of the string. The functions 

void toUpper(std::string &str) 

void toLower(std::string &str) 

can be used to convert all characters in the string to either upper or lower case. 



89 
 

Many devices in power grid applications are characterized by a one or two character 

alphanumeric string. It is useful to get these strings into a standard form so that they can be 

compared with other strings. The function 

std::string clean2Char(std::string &str) 

returns a two character string that is right justified. It will also remove any quotes that may or 

may not be around the original string. The strings C1, ‘C1’, “C1” and “  C1” will all return a 

string containing the two characters C1. A single character string will return a two character 

string with a blank as the first character. 

The function 

std:: string trimQuotes(std::string &string) 

can be used to remove either single or double quotation marks from around a string and remove 

any remaining white space at the beginning and end of the string. 

Finally, the function 

std::vector<std::string> blankTokenizer(std::string &str) 

will take a string in which individual elements are delimited by blank spaces and return a vector 

in which each element is a separate string (token). This function treats anything inside the 

original string that may be delimited by quotes as a single token, even if there are additional 

blank spaces between the quotes. Thus, the string 

1 5 “ATLANTA 001” 0.00056 1.02 

is broken up into a vector containing the strings 

1 

5 

“ATLANTA 001” 

0.00056 

1.02 

Both single and double quotes can be used as delimiters for internal strings. 

Global Store 

The GlobalStore class was created to make large amounts of data globally accessible to any 

processor when replicating the data would be inefficient in terms of the amount of memory 

required. The premise of the GlobalStore class is that processors generate vectors of data 

and this data is added to a GlobalStore object. After all processors have completed adding 

data, the data is “uploaded” to the GlobalStore object so that it is visible to all processors in 



90 
 

the system. Prior to the upload operation, the data is held locally on the processor that generated 

it. The original motivation for creating this class was to save system state variables that represent 

the results of individual simulations in a contingency analysis context. These variables could 

then be used to initialize additional calculations. 

The module GlobalStore is a templated class that is located in the 

gridpack::parallel namespace. The GlobalStore constructor is 

GlobalStore<data_type>(const gridpack::parallel::Communicator &comm) 

The constructor takes a communicator as an argument so data in the GlobalStore object will 

only be visible to processors in the communicator. It also takes the template argument 

data_type that can be any fixed-sized data type. This includes standard data types such as 

int, float, double, etc. but could also represent user-defined structs. 

Data can be added to the GlobalStore object using the command 

void addVector(const int idx, const std::vector<data_type> &vec) 

This command assumes that the user has some way of uniquely identifying each contributed 

vector by an index idx. The indices do not have to be complete, i.e. not all indices in some 

interval [0,…,N-1] need to be added to the storage object, although large gaps between 

contributed indices are potentially wasteful. The length of the vectors can differ for different 

indices and there are also no restrictions on which processor contributes which index, so 

contributions can be made in any order from any processor. The only restriction on indices is that 

they are not used more than once, i.e. addVector is not call more than once on any processor 

for a given index. This behavior maps fairly well to contingency calculations where the index 

represents the index of a particular contingency. The data layout in the GlobalStore object is 

illustrated schematically in Figure 11. 



91 
 

 

Figure 11. Schematic diagram of data storage in a GlobalStore object. Vectors can have any 

length and some indices can be missing data. 

Once the processors have completed adding vectors to the storage object, the data is still only 

stored locally. To make it globally accessible, it is necessary to move it from local buffers to a 

globally accessible data structure. This is accomplished by calling the function 

void upload() 

This function takes no arguments. After calling upload, it is no longer possible to continue 

adding data to the storage object using the addVector function. 

Once data has been uploaded to the storage object, any processor can retrieve the data associated 

with a particular index using the function 

void getVector(const int idx, std::vector<data_type> &vec) 

This function retrieves the data corresponding to index idx from global storage and stores it in a 

local vector. The getVector function can be called an arbitrary number of times after the data 

has been uploaded. If no data is found, the return vector will have length zero. 

One note about using the getVector function is worth mentioning. The implementation of the 

GlobalStore class uses some Global Array calls that can potentially interfere with MPI calls 

in a subsequent function call, resulting in the code hanging. If this occurs, it is usually possible to 

prevent the hang by calling Communicator::sync on the communicator that was used to 



92 
 

define the GlobalStore object. This should be done after completing all getVector calls 

but before making calls to other parallel functions. 

Bus Tables 

The bus table module was created to allow applications to update the properties of buses over 

multiple scenarios. This module is designed to read files of the form 

11002 BL   0.0011 0.0009 0.0018 0.0023 

11003 BL   0.2232 0.2113 0.2202 0.2317 

11005 BL   0.1188 0.1076 0.1211 0.1197 

11008 BL   0.0053 0.0045 0.0067 0.0072 

The first column is a bus ID, the second column is a one- or two-character tag identifying some 

device on the bus (e.g. a generator) and the remaining columns are properties of the bus for 

different scenarios. The columns are delimited by white space. If there are N columns of 

properties for the buses then the total number of columns in the file is N+2, where the extra two 

columns represent the bus indices and the device tags. The columns containing data are indexed 

from 0 to N-1. If the properties apply to the bus as a whole and not some device on the bus, then 

the tags can be ignored but some arbitrary one- or two-character string still needs to be included 

in the file for the second column. The scenarios themselves can represent different times, 

different parameter sets, different loads etc. The properties are assumed to be double precision 

values. Integer values can be used as properties by storing them as double precision values and 

then casting them back to integers inside the application. Not all buses need to be included in the 

table and in many cases, where a device is not present on a bus, it is undesirable to require that 

each bus be represented. 

The BusTable module is a templated class that takes the network type as a parameter.  It is 

located in the gridpack::bus_table namespace. The constructor has the form 

BusTable<MyNetwork>(const boost::shared_ptr<MyNetwork> network) 

An external file with the format described above can be read in using the function 

bool readTable(std::string filename) 

where filename points to the appropriate file. This function will ingest the file and store the 

contents in a distributed form that can be readily access by the application. This function is 

collective and must be called by all processes over which the network is defined. 

Accessing the data in the table can be accomplished using the following three functions 

void getLocalIndices(std::vector<int> &indices) 

void getTags(std::vector<std::string> &tags) 

void getValues(int idx, std::vector<double> &values) 



93 
 

The first function returns a list of the local bus indices to which the data applies, the second 

function returns a list of the corresponding device tags and the third function returns the values 

from column idx in the table. 

After calling the functions, the data can be applied to the appropriate buses using a loop of the 

form 

MyBus *bus; 

For (i=0; i<indices.size(); i++) { 

  bus = network->getBus(indices[i]).get(); 

  bus->setProperty(tags[i], values[i]); 

} 

where setProperty is a user-defined function in the MyBus class that does something useful 

with the data. This example assumes that the getLocalIndices and getTags functions 

have already been called outside the loop. 

The number of columns of properties can be accessed using the function 

int getNumColumns() 

This function is provided as a method for accessing the total number of scenarios directly from 

the bus table input, instead of having to include it as a separate parameter. 

Generalize Matrix-Vector Interface 
The matrix-vector interface described earlier is suitable for problems where the independent and 

dependent variables are both associated with buses. However, it does not work for systems where 

some variables are associated with branches. This can occur in optimization problems such as 

state estimation, where measurements are made on both buses and branches. Every measurement 

contributes an equation to the state-estimation optimization, which results in dependent variables 

associated with branches. To handle these types of problems, a more general approach to 

creating matrices and vectors is required. This is implemented via the GenMatVecInterface 

class. As illustrated in Figure 5, the BaseComponent class directly inherits from this interface, 

along with the MatVecInteface.  

Unlike the MatVecInterface class, there is no definitive way to map which elements are 

contributed by a branch or bus, and the number of elements contributed by a branch or bus does 

not reduce to simple blocks. Thus, the idea that buses and branches contribute simple blocks of 

data must be abandoned. The GenMatVecInterface just assumes that buses and branches 

contribute some number of equations (dependent variables) to the matrix and that they also 

contribute some number of independent variables to the matrix. This is information is embedded 

in the function calls 



94 
 

virtual int matrixNumRows(void) 

virtual int matrixNumCols(void) 

These two functions specify how many dependent variables (rows) and how many independent 

variables (columns) are associated with a bus or branch. For the state estimation module that is 

currently available in the GridPACK release, the dependent variables are the  number of 

measurements that are associated with the bus or branch and the independent variables are the 

voltage magnitude and phase angle, which are only associated with buses. Thus, if the state 

estimation Jacobian is being built, the matrixNumRows function returns the number of 

measurements on each bus and branch. The matrixNumCols only returns a non-zero value for 

buses since the branches have no independent variables. This value is generally 2, if the bus has 

any measurements associated with it or is attached to a bus or branch that has measurements, 

otherwise the value is 0. If the bus has measurements and is the reference bus, then the function 

returns 1. These functions allow the generalized mappers to determine the dimensions of the 

matrix (for state estimation, the Jacobian is not necessarily square). 

Unlike the original matrix-vector interface, the user has to assign the row and column indices to 

each matrix element. The actual values of these indices are evaluated by the mapper but it is up 

to the user to take the row index for a particular dependent variable (measurement) and the 

column index for a particular independent variable (voltage magnitude or phase angle) and pair 

them with a matrix element (contribution to the Jacobian). The functions that are used for this 

purpose are 

virtual void matrixSetRowIndex(int irow, int idx) 

virtual void matrixSetColIndex(int icol, int idx) 

virtual int matrixGetRowIndex(int irow) 

virtual int matrixGetColIndex(int icol) 

The first two functions are used by the mapper to assign indices for each of the rows and 

columns contributed by a component. The values of the indices need to be stored in the 

component so that they can be accessed by other components when evaluating matrix elements. 

Although these functions are only called by the mapper, they need to be implemented by the 

user, since multiple matrices may be generated by the application. The variables irow and 

icol refer to the list of rows and columns contributed by the component, while the index idx is 

the global index for that row or column in the full matrix. The point of the first two functions is 

to create a map between the local index of the row or column and the global index of the 

corresponding row or column in the full matrix. This map is needed because matrix elements 

constructed on one component may refer to rows or columns on other components. The second 

pair of functions allow users to recover the global index from the local index. 

For example, the state estimation calculation needs to be able to build the Jacobian matrix plus a 

diagonal matrix that represents the inverse of the uncertainties in all the measurements. The state 



95 
 

estimation components have two modes, Jacobian_H and R_inv for each of these 

calculations. The matrixSetRowIndex method for the buses has the form 

void SEBus::matrixSetRowIndex(int irow, int idx) 

{ 

  if (p_mode == Jacobian_H) { 

    if (irow < p_rowJidx.size()) { 

      p_rowJidx[irow] = idx; 

    } else { 

      p_rowJidx.push_back(idx); 

    } 

  } else if (p_mode == R_inv) { 

    if (irow < p_rowRidx.size()) { 

      p_rowRidx[irow] = idx; 

    } else { 

      p_rowRidx.push_back(idx); 

    } 

  } 

} 

The row indices for the Jacobian and R
-1

 are stored in two separate STL arrays p_rowJidx and 

p_rowRidx. For the state estimation example, the number of rows (for both the Jacobian and 

R
-1

) is equal to the number of measurements associated with the component. These 

measurements are held in an internal list in some order. If the number of measurements on the 

bus is M then the irow index will run from 0,..,M-1, with the irow index corresponding to the 

irow element in the list of measurements. The independent variables are also assumed to be 

ordered in some fashion. Again, for the state estimation example, the phase angle is indexed by 0 

and the voltage magnitude is indexed by 1.  

The function for accessing the row indices is implemented as 

int gridpack::state_estimation::SEBus::matrixGetRowIndex(int idx) 

{ 

  if (p_mode == Jacobian_H) { 

    return p_rowJidx[idx]; 

  } else if (p_mode == R_inv) { 

    return p_rowRidx[idx]; 

  } 

} 



96 
 

Again, depending on the mode, this function will return different values and for this reason, these 

functions need to be implemented by the user. They cannot be implemented as part of the 

framework because the number of modes is application-specific and controlled by the developer. 

The functions that are used to actually evaluate matrix elements are 

virtual int matrixNumValues(void) const 

virtual void matrixGetValues(ComplexType *values, 

                             int *rows, int *cols) 

The first function returns the total number of matrix elements that will be evaluated by the 

component. This is used inside the mapper to allocate arrays that hold matrix elements coming 

from the components. The second function is used to evaluate actual matrix elements, along with 

their row and column indices. The real-valued version of matrixGetValues replaces 

ComplexType with double. This function is the one that will make use of the 

matrixGetRowIndex and matrixGetColIndex functions. The evaluation of the 

matrixNumValues function can be quite complicated. For the state estimation Jacobian 

matrix, the number of matrix elements contributed by a component depends on the number of 

measurements associated with that component and the number of variables that couple to that 

measurement. A measurement on a bus will usually contribute two values for the independent 

variables on the bus, plus an additional two values for each bus that is attached to the center bus 

via a branch. This number will be modified slightly if one of the buses in this group is a 

reference bus. For branches, the number of matrix elements contributed by each measurement is 

approximately four, two elements for each bus at either end of the branch. This number may drop 

if one of the buses is a reference bus. 

The matrixGetValues function is used to evaluate each of the matrix elements. It also gets 

the matrix indices for this element from the appropriate network component. The number of 

matrix elements returned by this function must correspond to the number returned by the 

matrixNumValues function. To see how the assignment of the indices works, we can look at 

the matrix element of the Jacobian corresponding to the gradient of a real power injection 

measurement Pi on bus i with respect to the phase angle on another bus j that is connected to i 

via a single branch. The contribution to the Jacobian from this measurement is given by the 

formula 

                         
𝜕𝑃𝑖

𝜕𝜃𝑗
= 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗) − 𝐵𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗)) 

Suppose Pi is measurement k on the bus. Then the row index im for this matrix element can be 

evaluated by calling the function 

                im = matrixGetRowIndex(k); 



97 
 

The column index is associated with the phase angle variable on the remote bus j. Assuming that 

a pointer (bus_j) to the remote bus is already available, then the column index jm for this 

matrix element could be obtained by calling 

                jm = bus_j->matrixGetColIndex(0); 

This function is called with the argument 0 since the dependent variables are always ordered as 

phase angle (0) followed by voltage magnitude (1). The full list of Jacobian matrix elements can 

be obtained by looping over all measurements. For each bus measurement, there are 

contributions from the dependent variables on each connected bus plus two contributions from 

the calling bus. Similarly, for each branch measurement there are approximately four 

contributions coming from the independent variables associated with the buses at each end of the 

branch. A simple counter variable can be used to make sure that the matrix element value and the 

corresponding row and column indices stored in the same location of the values, rows and 

cols arrays that are returned by the getMatrixValues function. 

The GenMatVecInterface also includes functions for setting up vectors. These work in a 

very similar way to the generalized matrix functions, so they will only be described briefly. The 

two functions 

virtual void vectorSetElementIndex(int ielem, int idx) 

virtual void vectorGetElementIndices(int *idx) 

can be used to set and retrieve vector indices. The index ielem is the local index within the 

element while idx is the global index within the distributed vector. In this case it is usually 

more convenient to get all indices associate with a component at once, so the 

vectorGetElementIndices returns an array instead of a single value. The function 

virtual int vectorNumElements() const 

returns the number of vector elements contributed by a component and the function 

virtual void vectorGetElementValues(ComplexType *values, int *idx) 

returns a list of the values along with their global indices. For real vectors, replace the 

ComplexType array with an array of type double. Again, the index value can be obtained by 

first calling the vectorGetElementIndices function and using this to obtain the correct 

index for each element. 

The vector interface includes one additional function that does not have a counterpart in the 

matrix interface. This is the function 

virtual void vectorSetElementValues(ComplexType *values) 



98 
 

This function can be used to push values from a solution vector back into the network 

components. The values are ordered in the same way as the values in the corresponding 

vectorGetElementValues call, so it is possible to unpack them and assign them to the 

correct internal variables for each component. This function is analogous to the setValues call 

in the regular MatVecInterface. 

The functions in the GenMatVecInterface are invoked in the generalized mappers. These 

reside in the GenMatrixMap and GenVectorMap classes. Like the standard mappers, these 

classes are relatively simple and contain only a few methods. The GenMatrixMap class 

consists of the constructor 

GenMatrixMap<MyNetwork>(boost::shared_ptr<MyNetwork> network) 

and the methods 

boost::shared_ptr<gridpack::math::Matrix> mapToMatrix(void) 

void mapToMatrix(boost::shared_ptr<gridpack::math::Matrix> matrix) 

void mapToMatrix(gridpack::math::Matrix &matrix) 

void overwriteMatrix(boost::shared_ptr<gridpack::math::Matrix> matrix) 

void overwriteMatrix(gridpack::math::Matrix &matrix) 

void incrementMatrix(boost::shared_ptr<gridpack::math::Matrix> matrix) 

void incrementMatrix(gridpack::math::Matrix &matrix) 

These functions all have the same behaviors as the analogous functions in the standard 

FullMatrixMap. The GenVectorMap class has the constructor 

GenVectorMap<MyNetwork>(boost::shared_ptr<MyNetwork> network) 

and supports the methods 

boost::shared_ptr<gridpack::math::Vector> mapToVector(void) 

void mapToVector(boost::shared_ptr<gridpack::math::Vector> &vector) 

void mapToVector(gridpack::math::Vector &vector) 

These functions have the same interpretations as the analogous functions in the 

BusVectorMap class. A new function is 

mapToNetwork(boost::shared_ptr<gridpack::math::Vector> &vector) 

which can be used to push data from a vector back into the network components (both buses and 

branches). 



99 
 

Generalized Slab Mapper 
The generalized slab mapper also uses functions in the generalized matrix-vector interface to 

build dense matrices. These matrices are dense since they are generated by taking a typical 

vector that corresponds to a set of variables on the buses and branches and replicating the vector 

for different values of the variables. An example would be a matrix formed from a time series of 

values for a set of variables on the buses and branches. One set of indices for the matrix 

corresponds to the set of variables and the other set of indices corresponds to the time series. In a 

certain sense, these matrices are “fat” vectors since instead of each variable having only one 

value, they have multiple values. In general, slab matrices are not square. The slab matrices are 

used in the Kalman filter application, but they may have applicability elsewhere. 

The slab mappers use additional functions from the GenMatVecInterface in order to 

construct matrices. These functions are analogous to the functions for setting up vectors using 

the GenVectorMap. The main difference is that instead of describing a list of values, the 

functions describe a matrix block. The row dimension corresponds to a list of variables and the 

column dimension describes the number of values taken by each variable. The column dimension 

must be the same across all variables. The contribution to the matrix from each network 

component is given by the function 

void slabSize(int *rows, int *cols) const 

The index for each row can be stored using the function 

void slabSetRowIndex(int irow, int idx) 

This function is called by the mapper and is analogous to the vectorSetElementIndex 

function. For the slab matrices, there is no corresponding call for columns since the matrices are 

dense and all rows have the same number of non-zero columns. The indices can be retrieved by 

the function 

void slabGetRowIndices(int *idx) 

which is similar to the vectorGetElementIndices function. 

Optimization 
GridPACK supports optimization via an interface that can be applied to bus and banch 

components, as well as wrappers to some common optimization libraries. At present, there are no 

example problems available for the optimization capability in GridPACK. 

The optimization interface can be optionally inherited by the bus and branch classes. Unlike the 

other interfaces described in this document, this is not already included in the 

BaseBusComponent and BaseBranchComponent classes. A component that wants to use 

the optimization interface must explicitly inherit the interface when declaring the class. The 



100 
 

optimization interface is built up around the Expression class that is designed to provide 

some functional programming capability to GridPACK. This functionality matches the interfaces 

to many optimization packages. Additional classes needed by the optimization interface are the 

Variable class and the Constraint class. 

The Variable, Expression and Constraint classes are defined in the 

gridpack::optimization namespace. A number of different types of variables inherit 

from Variable. This includes RealVariable, IntegerVariable and 

BinaryVariable. Variables can take on different values and are designed to be used as parts 

of expressions. Expressions, in turn, can be composed of variables and can also be composed of 

other expressions. This allows users to build up quite complicated functions. An example of an 

expression is the following 

    typdef boost::shared_ptr<Variable> VarPtr; 

    typedef boost::shared_ptr<Expression> ExpPtr; 

 

    VarPtr x; 

    ExpPtr f; 

    x.reset(new RealVariable(0.0)); 

    ExpPtr a(new RealConstant(5.0)); 

    ExpPtr b(new RealConstant(-2.0)); 

    f = a*x + b; 

This code fragment defines the function f. Note that the last line is not an assignment in the 

conventional sense; f does not represent the value computed from the current values of a, x, and 

b but rather the operation of multiplying x by the constant value a and then adding the constant 

value b to the result. 

The functions in the optimization interface are all expressed in terms of the Expression and 

Variable classes. Apart from simple constructors and destructors, there are only three functions 

in this interface. The first of these returns a list of all variables associated with a particular bus or 

branch. 

std::vector<boost::shared_ptr<Variable> > getVariables() 

Note that the variables returned by a network component can be used in expressions generated 

by other components but all variables in the problem should be returned by one component 

somewhere in the network and by no more than one component. This function is called by the 

optimizer to get a complete listing of variables. Ghost buses and branches do not call this 

function. 



101 
 

The second function is used to determine the constraints in the system. A constraint is a relation 

between two expressions. Allowed relations are <=, >= and ==. The function 

std::vector<boost::shared_ptr<Constraint> > getLocalConstraints() 

returns a list of constraints that are associated with a particular network component. This 

function assumes that all returned constraints can be evaluated by the associated network 

component. Constraints that are functions of variables on the component plus variables on 

attached components fall into this category. Simple constraints defined as being numerical 

bounds on the value of a variable can be incorporated into the variables definitions. The 

Constraint class is designed to handle more complicated constraints that are functions of one 

or more variables. 

The final function in the optimization interface is 

boost::share_ptr<Expression> getObjectiveFunction() 

This function assumes that the objective function for the entire system is a sum of terms 

contributed by each network component. Buses are branches that contribute nothing can return a 

null pointer. These three functions can be used to define the complete optimization problem. The 

remainder of this section will expand on the different classes used to implement these functions. 

The Variable class is used to define different types of variables. Variables can have real 

values, integer values or they can be binary swiches (0 and 1). All types of variables are derived 

from the Variable base class. The RealVariable class has two constructors 

RealVariable(double val) 

RealVariable(double val, double vmin, double vmax) 

The first constructor initializes the variable with the value val, the second constructor initializes 

the variable with the value val and applies the constraints 

    val >= vmin 

    val <= vmax 

to the variable. These constraints could also be applied using the Constraint class, but this is 

obviously simpler, if applicable. The variable can be named using the method 

void name(const std::string name) 

The name of the variable can be recovered by the user with the function 

std::string name() const 



102 
 

The name is an important property of the variable. It allows the application to identify two 

variables as representing the same quantity if they are located on different network components. 

This can happen with ghost buses and branches, where multiple copies of the same bus or branch 

may exist in the system. To make sure that the application can identify variables from different 

copies of the same network components as being the same, the variables defined within the 

copies must all have the same names. Conversely, variables from physically distinct network 

components need to have unique names that distinguish them from each other. 

All variables have an implicit upper and lower bound, even if this is not explicitly set using the 

constructor. If only the initial value of the variable is set by the constructor, then the upper and 

low bounds are set internally to machine limited values. The actual limits of the variable, along 

with the initial value, can be recovered with the functions 

double initial() const 

double lowerBound() const 

double upperBound() const 

The IntegerVariable class is similar to the RealVariable class, except that only 

integer values of the variable are allowed. It has the two constructors 

IntegerVariable(int val) 

IntegerVariable(int val, int vmin, int vmax) 

The behavior of this class is similar to that of RealVariable, except all arguments are 

integers. Similar to the RealVariable class, the Integer variable class supports the functions 

void name(const std::string name) 

std::string name() const 

int initial() const 

int lowerBound() const 

int upperBound() const 

Finally, the BinaryVariable class has the single constructor 

BinaryVariable(int val) 

The BinaryVariable class inherits from the IntegerVariable class and has lower and 

upper bounds of 0 and 1. It can only take on these two values. Similer to the real and integer 

variable classes, it has the methods 

void name(const std::string name) 

std::string name() const 

int initial() const 

int lowerBound() const 



103 
 

int upperBound() const 

In this case the last two methods are redundant, since the return values will always be 0 and 1, 

respectively. 

Variables can be used to create expressions. Expressions can consist of a single variable, a 

constant, or variables and expressions combined together using unary or binary functions. The 

expression class is designed to support the relatively simple sums over polynomials that are 

encountered in power grid applications, but even with this limited scope, quite a few complicated 

functions can be created with it. Expressions never use variables directly, they are composed 

using variable pointers, so all variables in an expression should be instantiated using a 

boost::share_ptr<Variable> construct. Expressions themselves should also be 

instantiated using a boost::share_ptr<Expression> construct. To create a simple 

quadratic polynomial requires the code 

VarPtr x; 

ExpPtr a(new RealConstant(1.0)); 

ExpPtr b(new RealConstant(-2.0)); 

ExpPtr c(new RealConstant(3.0)); 

x.reset(new RealVariable(0.0,-10.0,10.0)); 

ExpPtr x2 = x^2; 

ExpPtr p = a+b*x+c*x2; 

The exponentiation operation in the Expression class does not have the correct precedence 

behavior so it is necessary to define the Expression x2 and then using it to define p. 

Expressions can be combined using the binary operations 

    ExpPtr+ExpPtr 

    ExpPtr-ExpPtr 

    ExpPtr*ExpPtr 

    ExpPtr/ExpPtr 

Expressions can also be used in the functions 

    ExpPtr^int 

    sin(ExpPtr) 

    cos(ExpPtr) 

More complicated expressions can be built up from these simple operations. A constant 

expression can be created using the constructs 

ExpPtr var(new RealConstant(double)); 

ExpPtr var(new IntegerConstant(int)); 



104 
 

These can then be used in other expressions as parameters. 

Finally, constraints can be created using constructs such as 

boost::shared_ptr<Constraint> const(ExpPtr1 relation constant); 

where the character string relation can be 

    “>=” 

    “<=” 

    “==” 

and constant is a double or int value. 

Application Modules 
Many of the example applications in GridPACK have been converted to modules that can be 

called from other programs. These modules make it relatively simple to chain different types of 

calculations together to form larger applications. An example is using power flow or state 

estimation to initialize a dynamic simulation. The modules are designed to separat the major 

phases of the calculation into calls so that users have some fine-grained control that allows them 

to mix different applications together. In most cases, different options for setting up calculations 

are provided so that once a network has been read in and partitioned, it is not necessary to repeat 

this process when a new calculation is started based on the results of a previous simulation. 

Currently, three applications are available as modules within GridPACK. They include power 

flow, state estimation, and dynamic simulation using the full Y-matrix. Each of these modules 

can be used to create a short, standalone application, but the goal is to enable users to combine 

modules together in more complicated work flows. These modules can also be used as a starting 

point for users to create their own applications by modifying the existing code in the modules to 

create new functionality. Each of the modules is described in more detail below. Example codes 

that use the modules to implement applications can be found in the src/application 

directory. These include powerflow, state estimation, contingency analysis and dynamic 

simulation. These directories also contain sample input networks and input files. Options for 

different solvers can be found in these files. 

Power Flow 

The power flow module consists of a collection of function calls that can be used to set up and 

run power flow calculations. Additional routines are designed to support different types of 

contingency analysis. The power flow application class is PFAppModule and belongs to the 

gridpack::powerflow namespace. The constructor and destructor for this class are simple 

and only create the basis power flow object. In particular, the power flow network must be 

created outside the power flow object and then assigned to the object when the network 

configuration file is read in. This can be done with the call 



105 
 

void readNetwork(boost::shared_ptr<PFNetwork> &network, 

      Configuration *config) 

The Configuation object should already be pointing to an open file containing a 

Powerflow block. This block contains a networkConfiguration field that has the name 

of the PSS/E format file containing the network information. The network configuration file is 

read directly from the input deck by the readNetwork method. The PFNetwork is defined 

in the the gridpack.hpp header file. The configuration module is usually opened in the main 

calling program and a pointer to the file can be passed through to power flow module. The 

readNetwork routine also partitions the network. 

Once the network has been read in, the internal indices and exchange buffers can be set up by 

calling 

void initialize() 

The power flow application is now ready to be used. To solve the current configuration, the calls 

void solve() 

void nl_solve() 

can be used. The first call solves the system uses a hand coded Newton-Raphson iteration loop to 

solve the system, the second call uses a non-linear solver to solve the power flow equations. Both 

solvers can be controlled through solver options in the input file. The type of linear solver used 

in the solve routine is controlled by the parameters in the LinearSolver block, the non-linear 

solver is controlled by the properties in the NonlinearSolver block 

Output from the power flow solution can be written to an output file or standard out using one of 

the commands 

void write() 

void writeBus(const char* signal) 

void writeBranch(const char* signal) 

The first command writes out the real and imaginary parts of the complex power for the branches 

and the voltage magnitude and phase angle for the buses. The second command only writes out 

bus properties. If no argument is given, the command writes out the voltage magnitude and phase 

angle for every bus. For buses, the argument “pq” writes out the real and imaginary parts of the 

complex voltage and “record” writes out the type of bus, the total active and reactive constant 

power loads, and the total active and reactive generator power outputs. For branches, “flow” 

writes out the real and imaginary parts of the complex power and “record” writes out the 

values of the resistance, reactance, charging and A, B, C ratings for each line element. 



106 
 

Additional information can be written to standard out or a file using the command 

void print(const char* buf) 

which writes out the contents of the character array buf. This command can be called from all 

processors, but only one processor actually writes out data. 

The location of output can be controlled using the commands 

void open(const char* filename) 

void close() 

If the write commands or print are used without calling open, then all output is directed to 

standard out. If open is called, then the output is directed to the file specified in filename until 

the close command is called, after which all output is again directed towards standard out. 

If the results of the power flow calculation are needed by another calculation, then the voltage 

magnitude and phase angle of the bus and the real and imaginary parts of the complex power for 

each generator can be stored in the DataCollection objects on each bus using the command 

void saveData() 

If the network is then copied to a new type of network, this information is carried over to the new 

network. The voltage magnitude and phase angle is stored in the DataCollection variables 

BUS_PF_VMAG and BUS_PF_VANG and the generator parameters are stored in the indexed 

variables GENERATOR_PF_PGEN[i] and GENERATOR_PF_QGEN[i], where the index i 

runs over all generators on the bus. 

The remaining methods in the PFAppModule class support different kinds of contingency 

applications. Contingencies are defined using the data structure 

struct Contingency 

{ 

  int p_type; 

  std::string p_name; 

  // Line contingencies 

  std::vector<int> p_from; 

  std::vector<int> p_to; 

  std::vector<std::string> p_ckt; 

  // Status of line before contingency 

  std::vector<bool> p_saveLineStatus; 

  // Generator contingencies 

  std::vector<int> p_busid; 



107 
 

  std::vector<std::string> p_genid; 

  // Status of generator before contingency 

  std::vector<bool> p_saveGenStatus; 

}; 

The variable p_type corresponds to an enumerated type that can have the values Generator 

and Branch. The variables p_saveLinesStatus and p_saveGenStatus are used 

internally and do not have to be set by the user. The remaining variables are used to describe the 

lines and generators that may fail during a contingency event. These variables are all vectors, 

since a single contingency could theoretically represent the failure of multiple elements. For 

failures of type Branch, the variables p_from and p_to are the original indices of the “from” 

and “to” bus that identify a branch and the variable p_ckt is the 2 character identifier of the 

individual transmission element. For failures of type Generator, p_busid is the original 

index of the bus and p_genid is the 2 character identifier of the generator that fails. An 

example of how to use this functionality is given in the contingency analysis application that can 

be found under src/applications/contingency_analysis. This is also a good 

example of how to use modules. 

Two calls 

bool setContingency(Contingency &event) 

bool unsetContingency(Contingency &event) 

can be used to set or unset a contingency. The call unsetContingency should only be called 

after calling setContingency and it should use the same event argument. After calling the 

unsetContingency method, the network should have the same configuration as before 

calling the setContingency method. 

The remaining calls in PFAppModule can be used to determine the status of a network after 

solving a configuration with a contingency. The functions 

bool checkVoltageViolations(double Vmin, double Vmax) 

bool checkVoltageViolations(int area, double Vmin, double Vmax) 

can be used to check for a voltage violation anywhere in the system where Vmin and Vmax are 

the minimum and maximum allowable voltage excursions (per unit). The second function only 

checks for violations on buses with the specified value of area. These functions are true if there 

are no voltage violations and return false if a violation is found on one or more buses. It 

frequently turns out that many networks have voltage violations even in the absence of any 

contingencies and it is often desirable to ignore these violations. This can be accomplished using 

the function 



108 
 

void ignoreVoltageViolations(double Vmin, double Vmax) 

If this function is called after solving the power flow system in the absence of any contingencies, 

then buses that contain violations will be ignored in subsequent checks of violations. These 

settings can be undone by calling 

void clearVoltageViolations() 

Line overload violations can be checked by calling one of the functions 

bool checkLineOverloadViolations() 

bool checkLineOverloadViolations(int area) 

The limits on the line are contained in parameters read in from the network configuration file so 

these functions have no arguments describing the line limits. The second function will only 

check for violations on lines with the specified value of area. Like voltage violations, branches 

that display line overload violations that are present even without contingencies can be ignored 

in the checks by calling the function 

void ignoreLineOverloadViolations() 

after running a calculation on the system without contingencies. These settings can be cleared 

using the function 

void clearLineOverloadViolations() 

Finally, the internal voltage variables that are used as the solution variables in the power flow 

calculation can be reset to their original values (specified in the network configuration file) by 

calling the function 

void resetVoltages() 

Again, this may be useful in contingency calculations where multiple calculations are run on the 

same network and it is desirable that they all start with the same initial condition. 

State Estimation Module 

The state estimation module can be used to set up and run a state estimation calculation. It does 

not have the extra functions that the power flow module contains for supporting contingency 

analysis, so the interface is a bit smaller. In addition to a standard network configuration file, the 

state estimation calculation needs a second file consisting of measurements. This file has the 

format 

<Measurements> 

  <Measurement> 

    <Type>VM</Type> 



109 
 

    <Bus>1</Bus> 

    <Value>1.0600</Value> 

    <Deviation>0.0050</Deviation> 

  </Measurement> 

  <Measurement> 

    <Type>PIJ</Type> 

    <FromBus>1</FromBus> 

    <ToBus>2</ToBus> 

    <CKT>BL</CKT> 

    <Value>1.5688</Value> 

    <Deviation>0.0100</Deviation> 

  </Measurement> 

  <Measurement> 

    <Type>QIJ</Type> 

    <FromBus>1</FromBus> 

    <ToBus>2</ToBus> 

    <CKT>BL</CKT> 

    <Values>-0.2040</Value> 

    <Deviation>0.0100</Deviation> 

  </Measurement> 

  <Measurement> 

    <Type>PI</Type> 

    <Bus>1</Bus> 

    <Value>2.3240</Value> 

    <Deviation>0.0100</Deviation> 

  </Measurement> 

  <Measurement> 

    <Type>QI</Type> 

    <Bus>1</Bus> 

    <Value>-0.1690</Value> 

    <Deviation>0.0100</Deviation> 

  </Measurement> 

</Measurements> 

for the five types of measurements VM, PIJ, QIJ, PI, and PJ. Measurements can appear on any 

element of the network and multiple measurements are allowed on each element. The state 

estimation module does not have any error checking ability to determine if there are sufficient 

measurements to guarantee solvability, if not enough measurements are available then the 

calculation will simply crash or fail to converge. 



110 
 

The state estimation module is represented by the SEAppModule class which is in the 

gridpack::state_estimation namespace. The gridpack.hpp file contains a 

definition for the state estimation network SENetwork. After instantiating an SEAppModule 

object and a shared pointer to an SENetwork, the state estimation calculation can read in an 

external network configuration file using the command 

void readNetwork(boost::shared_ptr<SENetwork> &network, 

    gridpack::utility::Configuration *config) 

The Configuration object should already be pointing at an open file containing a 

State_estimation block. Inside the State_estimation block there should be a 

networkConfiguration field containing the name of the network configuration file. The 

file name is parsed directly inside the readNetwork method and does not need to be handled 

by the user. 

Alternatively, the SENetwork object may have already been cloned from an existing network 

and therefore there is no need to read in the configuration from an external file and partition it 

across processors. In this case, the SEAppModule can be assigned the network using the 

command 

void setNetwork(boost::shared_ptr<SENetwork> &network, 

    gridpack::utility::Configuration *config) 

This function just assigns the existing network to an internal pointer, as well as a pointer to the 

input file. It is much more efficient than reading in the network configuration file, if the network 

already exists. This can occur when different types of calculations are being chained together. 

Once a network is in place and has been properly distributed, the measurements can be read in by 

calling the function 

void readMeasurements() 

The name of the measurement file is in the input deck and a pointer to this file has already been 

internally cached in the SEAppModule when the network was assigned. The measurement file 

name is stored in the measurementList field within the State_estimation block. 

The network object can be initialized and the exchange buffers set up by calling the 

void initialize() 

method followed by 

void solve() 



111 
 

to obtain the solution to the system. Results can be written out to standard out using the method 

void write() 

This function will write out the voltage magnitude and phase angle for each bus and the real and 

imaginary parts of the reactive power for each branch. In addition, it will print out a comparison 

of the calculated value and the original measured value for all measurements. 

Finally, the results of the state estimation calculation can be saved to the DataCollection 

object assigned to the buses by calling the  

void saveData() 

method. The voltage magnitude and phase angle are stored as the variables BUS_SE_VMAG and 

BUS_SE_VANG and the generator parameters are stored as the indexed variables 

GENERATOR_SE_PGEN[i] and GENERATOR_SE_QGEN[i], where i runs over the set of 

generators on the bus. 

Dynamic Simulation Module using Full Y-Matrix 

GridPACK supplies a dynamic simulation module that integrates the equations of motion using 

an algorithm based on inversion of the full Y-matrix. This module has been designed to enable 

the addition of generator models that extend beyond the classical generator. It also supports 

exciters, governors, relays and dynamic loads. Models that are currently available include 

Generators: 

  GENCLS 

  GENSAL 

  GENROU 

Exciters: 

  EXDC1 

  ESST1A 

Governors: 

  WSIEG1 

  WSHYGP 

Relays: 

  LVSHBL 

  FRQTPAT 

  DISTR1 



112 
 

Dynamic Loads: 

  ACMTBLU1 

  IEEL 

  MOTORW 

  CIM6BL 

The full Y-matrix implementation of dynamic simulation is represented by the DSFullApp 

class and the DSFullNetwork, both of which reside in the 

gridpack::dynamic_simulation namespace. 

The dynamic simulation module uses an input deck of the form 

<?xml version="1.0" encoding="utf-8"?> 

<Configuration> 

  <Dynamic_simulation> 

    <networkConfiguration>IEEE_145.raw</networkConfiguration> 

    <generatorParameters>IEEE_145.dyr</generatorParameters> 

    <simulationTime>30</simulationTime> 

    <timeStep>0.005</timeStep> 

    <faultEvents> 

      <faultEvent> 

        <beginFault> 2.00</beginFault> 

        <endFault>   2.05</endFault> 

        <faultBranch>6 7</faultBranch> 

        <timeStep>   0.005</timeStep> 

      </faultEvent> 

    </faultEvents> 

    <generatorWatch> 

      <generator> 

       <busID> 60 </busID> 

       <generatorID> 1 </generatorID> 

      </generator> 

      <generator> 

       <busID> 112 </busID> 

       <generatorID> 1 </generatorID> 

      </generator> 

    </generatorWatch> 

    <generatorWatchFrequency> 1 </generatorWatchFrequency> 

    <generatorWatchFileName>gen_watch.csv</generatorWatchFileName> 

    <LinearMatrixSolver> 



113 
 

      <PETScOptions> 

        -ksp_atol 1.0e-18 

        -ksp_rtol 1.0e-10 

        -ksp_monitor 

        -ksp_max_it 200 

        -ksp_view 

      </PETScOptions> 

    </LinearMatrixSolver> 

  </Dynamic_simulation> 

</Configuration> 

The input for dynamic simulation module is contained in the Dynamic_simulation block. 

Two features are important, the blocks describing faults and the blocks describing monitored 

generators. Faults are described in the faultEvents block. The code currently only handles 

faults on branches. Inside the faultEvents block are individual faults, described by a 

faultEvent block. Multiple faultEvent blocks can be contained within the 

faultEvents block. As will be described below, it is possible for the faults to be listed in a 

separate file. This can be convenient for describing a task-based calculation that may contain a 

lot of faults. The parameters describing the fault include the time (in seconds) that the fault is 

initiated, the time that it is terminated, the timestep used while integrating the fault and the 

indices of the two buses at either end of the fault branch. 

When running a dynamic simulation, it is generally desirable to monitor the behavior of a few 

generators in the system and this can be done by setting generator watch parameters. The 

generatorWatch block specifies which generators are to be monitored. Each generator is 

described within a generator block that contains the index of the bus that the generator is 

located on and the character string ID of the generator. The results of monitoring the generator 

are written to the file listed in the generatorWatchFileName field and the frequency for 

storing generator parameters in this file is set in the generatorWatchFrequency field. This 

parameter describes the time step interval for writing results (an integer), not the actual time 

interval. 

Before using the dynamic simulation module, a network needs to be instantiated outside the 

DSFullApp and then passed into the module. If the module itself is going to read and partition 

a network, then it should use the function 

void readNetwork(boost::shared_ptr<DSFullNetwork> &network, 

  gridpack::utility::Configuration *config, 

  const char *otherfile = NULL) 



114 
 

The Configuration object should already be pointing to an input deck with a 

Dynamic_simulation block that specifies the network configuration file. The optional 

otherfile argument in readNetwork can be used to overwrite the 

networkConfiguration field in the input deck with a different filename. This capability 

has proven useful in some contingency applications where multiple PSS/E files need to be read. 

Alternatively, a distributed network may already exist (it may have been cloned from another 

calculation). In that case, the function 

void setNetwork(boost::shared_ptr<DSFullNetwork> &network, 

  gridpack::utility::Configuration *config) 

can be used to assign an internal pointer to the network. Again, the Configuration object 

should already be pointing to an input file. 

Additional generator parameters can be assigned to the generators by calling the function 

void readGenerators() 

This function opens the file specified in the generatorParameters field in the input file 

and reads the additional generator parameters. The file is assumed to correspond to the PSS/E 

.dyr format. The devices listed at the start of this section can be included in this file. 

After setting up the network and reading in generator parameters, the module can be initialized 

by calling 

void initialize() 

This sets up internal parameters and initializes the network so that it is ready for calculations. 

A list of faults can be generated from the input file by calling 

std::vector<gridpack::dynamic_simulation::DSFullBranch::Event> 

  getFaults(gridpack::utility::Configuration::CursorPtr cursor) 

If the cursor variable is pointed at a Dynamic_simulation block inside the input file (as in 

the example input block above) then this function will return a list of faults from the input deck. 

However, it is also possible that the cursor could be pointed to the contents of another file. As 

long as it is pointed to a block containing a faultEvents block, this function will return a list 

of faults. This allows users to declare a large list of faults in a separate file and then access the 

list by including the external file name as a parameter in the input deck of their application. 

The monitoring of generators specified in the input deck can be set up by calling 

void setGeneratorWatch() 



115 
 

This will guarantee that all generators specified in the input deck are monitored and that the 

results are written out to the specified file. If this function is not called, the generator watch 

parameters in the input file are ignored. 

Simulations can be run using the function 

void solve(gridpack::dynamic_simulation::DSFullBranch::Event fault) 

Some additional results can be written at the end of the simulation using the function 

void write(const char *signal) 

The signal parameter can be used to control which results are written out. This function currently 

does not support any output. All output results are controlled using the generator watch 

parameters. 

Some additional functions can be used to control where output generated during the course of a 

simulation is directed. The following two functions can be used to direct output from the write 

function to a file 

void open(const char* filename) 

void close() 

The function 

void print(const char* buf) 

can be used to print out a string to standard out. If the open function has been used to open a 

file, then the output is directed to the file. This function is equivalent to the header 

convenience function in the serial IO classes. 

Additional functions can be used to stored data from the generator watch variables. These can be 

used to save the time series data from a simulation in a collection of vectors. The application can 

then use these series in whatever way it wants. There are four functions that enable this capility. 

The first is 

void saveTimeSeries(bool flag) 

This function must be called with the argument set to “true” in order for the time series data to be 

saved. Otherwise it is only written to output and no data is saved between time steps. The second 

function can be called after the solve function has been called and the simulation is completed. It 

returns a vector of time series 

std::vector<strd::vector<double> > getGeneratorTimeSeries() 



116 
 

This function returns a vector containing the time series data for all the watched generators 

located on this processor (generators on buses owned by neighboring processors are not 

included). 

To find out which variables are actually in the list returned by getGeneratorTimeSeries 

requires the remaining two functions. The function 

void getListWatchedGenerators(std::vector<int> &bus_ids, 

    std::vector<std::string> &gen_ids) 

returns a list of the bus IDs and 2-character generator tags for all monitored generators. In 

particular, it assigns and ordering to these generators that is used by function 

std::vector<int> getTimeSeriesMap() 

This function returns a map between the elements in the list of time series returned by 

getGeneratorTimeSeries and the generators that those time series correspond to. For 

example suppose the time series list has four elements in it that happen to correspond to two 

generators on processor. There are a total of six monitored generators in the system. The vectors 

returned by getListWatchedGenerators have length six, the vector returned by 

getTimeSeriesMap has length four. The value in the map vector for the corresponding 

element in the time series vector points to the location of the bus index and generator tag for that 

time series variable in the lists returned by getListWatchedGenerators. This still leaves 

it up to the user to identify the actual variable being watched within the generator. In this 

example there are four variables that are watched but only two generators. Currently, the 

generator watch capability only watches the rotor speed and rotor angle of each generator. The 

first time series is the speed and the second time series is the angle. 

Kalman Filter 

GridPACK includes a Kalman filter module that can be used for dynamic state estimation. The 

Kalman filter relies heavily on parallel matrix multiplies that are not currently very high 

performing, so users will probably find this module too slow for large grids. However, we 

include it for users interested in exploring the use of Kalman filters in smaller applications. We 

hope to improve performance in future releases. 

The current implementation of the Kalman filter only supports classical generators. These are 

described in a PSS/E .dyr formatted file. The network itself can be described using a standard 

PSS/E .raw file. In addition to the .raw and .dyr files, users need to supply times series data for 

the voltage magnitude and voltage phase angle on all buses. These are stored as .csv files. The 

format for both the voltage magnitude and phase angle files is 

t-3001,  Bus-1,  Bus-2,… 

0.0,    -0.001, -0.135,… 



117 
 

0.1,    -0.001, -0.135,… 

0.2,    -0.001, -0.135,… 

 : 

All entries on the same lines are separated by commas. The first row contains the name of all 

columns. The first column is time and has a name of the form t-xxx, where xxx is an integer 

representing the number of time steps in the file. The number of rows in the file corresponds to 

xxx+1 (the extra row is the first line with the column names). The number of columns is equal 

to the number of buses in the file plus one (the extra column contains the times). After the first 

column, the remaining names are all of the form Bus-xxx, where xxx is an integer 

representing the bus ID. The remaining rows contain the time of the measurement and the value 

for the measurement on each of the buses. 

The input file for the Kalman filter module used both for a dynamic simulation as well as input 

that is unique to the Kalman filter module. The dynamic simulation parameters that are used 

include 

  <Dynamic_simulation> 

    <simulationTime>3</simulationTime> 

    <timeStep>0.01</timeStep> 

    <!-- = 1 Fault Event is known;  

         = 0 Fault event is unknown, switch is skipped.  

    --> 

    <KnownFault> 1 </KnownFault> 

    <TimeOffset> 0 </TimeOffset> <!--skip initial measurement data --> 

    <faultEvents> 

      <faultEvent> 

        <beginFault> 1 </beginFault> 

        <endFault>   1.1</endFault> 

        <faultBranch>6 7</faultBranch> 

        <timeStep>   0.01</timeStep> 

      </faultEvent> 

    </faultEvents> 

  </Dynamic_simulation> 

The fault used in the simulation is specified using the same faultEvents block as for 

dynamic simulation. If the Kalman filter simulation is not being initialized from another 

calculation, the networkConfiguration field can also be added. The KnowFault and 

TimeOffset parameters are unique to the Kalman filter application and control whether the fault 

is considered to be a know event and whether all the time series data should be used in the 

analysis. 



118 
 

The Kalman filter block consists of the fields 

  <Kalman_filter> 

    <KalmanAngData>IEEE14_Kalman_input_ang.csv</KalmanAngData> 

    <KalmanMagData>IEEE14_Kalman_input_mag.csv</KalmanMagData> 

    <generatorParameters>IEEE14_classicGen.dyr</generatorParameters> 

    <ensembleSize>21</ensembleSize> 

    <gaussianWidth>1e-2</gaussianWidth> 

    <noiseScale>1e-4</noiseScale> 

    <randomSeed>931316785</randomSeed> 

    <maxSteps>3000</maxSteps> 

    <LinearSolver> 

      <PETScOptions> 

        -ksp_view 

        -ksp_type richardson 

        -pc_type lu 

        -pc_factor_mat_solver_package superlu_dist 

        -ksp_max_it 1 

      </PETScOptions> 

    </LinearSolver> 

  </Kalman_filter> 

The KalmanAngData and KalmanMagData fields specify the locations of the files 

containing the time series data for the voltage magnitude and phase angle. The .dyr file 

containing the generator parameters (classical generators only) is specified in the 

generatorParameters field. Additional Kalman filter parameters include 

 ensembleSize: The number of random ensembles generated for the Kalman filter 

calculation. 

 gaussianWidth:  

 noiseScale: 

 randomSeed: This is an arbitrary integer used to seed the GridPACK random number 

generator. 

 maxSteps: this parameter can be used to control the number of steps simulated. If the 

number of steps is smaller than the number of steps in the time series data files, then only 

the number of steps set by maxSteps will be simulated. 

The Kalman filter also needs to make use of linear solvers and the type of solver and its 

parameters can be specified in this block as well. 



119 
 

The Kalman filter module is represented by the KalmanApp class and the KalmanNetwork, 

both of which are in the gridpack::kalman_filter namespace. At present there are only 

a few functions in this class, more will probably be added as we develop this module further. 

Apart from the constructor and destructor, the KalmanApp class has a method for reading in a 

network from a PSS/E formatted file and partitioning it among processors 

void readNetwork(boost::shared_ptr<KalmanNetwork> &network, 

    gridpack::utility::Configuration *config) 

If the network already exists, then it can be applied to an existing KalmanApp object using the 

function 

void readNetwork(boost::shared_ptr<KalmanNetwork> &network, 

    gridpack::utility::Configuration *config) 

The application can be initialized by calling the function 

void initialize() 

This function will read in the files containing the time series data for the voltage magnitude and 

phase angles and will set update configure the calculation based on the parameters in the input 

file. The simulation is run and output generated using 

void solve() 

The values of the rotor speed and rotor angle for all generators will be written to the files 

omega.dat and delta.dat after this simulation is run. 

GridPACK Examples 
This section will expand on the discussion of the power flow application and provide additional 

examples of how GridPACK can be used to develop applications. Two of these are simple 

applications that have been provided in GridPACK that illustrate how the code works, without 

necessarily getting involved in the details that would be needed to implement a realistic power 

grid model. The third example is an in-depth discussion of the contingency analysis application. 

This is an actual application but it is fairly short and provides a good illustration of how to create 

multi-task simulations and also an example of how to use modules. 

The first of the simple examples consists of a “hello world” program that writes a message from 

a small 10 x 10 square grid of buses and branches. The second example calculates the electric 

current flow through a square grid of resistors. Both examples are designed to show how the 

basic features of the GridPACK framework interact with each other. More complicated examples 

for realistic models can be found in the modules and components directories under applications. 

Athough these examples represent more complicated bus and branch models, they contain many 

of the same characteristics that can be found in the hello world and resistor grid programs. 



120 
 

The contingency analysis application is also discussed in depth since this illustrates a great many 

of the advanced features of GridPACK in a fairly short code. These features include creating 

your own parser, using subcommunicators and the task manager, using modules and controlling 

output. 

“Hello World” 

The “Hello world” program is a famous example problem from C programming. Many other 

packages have adopted the spirit of this program, if not the specifics, to describe the simplest 

non-trivial program that can be written using the package. In this section, a program that prints 

out a message from each of the buses and branches on a small grid is described. This application 

requires us to define branch and bus classes, create a network class and implement a top level 

application. 

We start by implementing the load and serialWrite methods in the BaseComponent class for 

the bus and branch classes of our “Hello world” application. The bus and branch classes for this 

application are called HWBus and HWBranch and have the header file 

#ifndef _hw_components_h_ 

#define _hw_components_h_ 

 

#include "boost/smart_ptr/shared_ptr.hpp" 

#include "gridpack/include/gridpack.hpp" 

 

namespace gridpack { 

namespace hello_world { 

 

class HWBus 

  : public gridpack::component::BaseBusComponent { 

  public: 

    HWBus();  // Constructor 

    ~HWBus()  // Destructor 

    void load(const boost:shared_ptr 

              <gridpack::component::DataCollection> &data); 

    bool serialWrite(char *string, const int bufsize, 

                     const char *signal = NULL); 

  private: 

    int p_original_idx; 

    friend class boost::serialization::access; 

    template<class Archive> void serialize(Archive &ar, 

      const unsigned int version) 

    { 



121 
 

      ar & boost::serialization::base_object 

         <gridpack::component::BaseBusComponent>(*this) 

         & p_original_idx; 

    } 

}; 

class HWBranch 

  : public gridpack::component::BaseBranchComponent { 

  public: 

    HWBranch();   //Constructor 

    ~HWBranch();  //Destructor 

    void load(const boost::shared_ptr 

              <gridpack::component::DataCollection> &data); 

    bool serialWrite(char *string, const int bufsize, 

                     const char *signal = NULL); 

 

  private: 

    int p_original_idx1; 

    int p_original_idx2; 

 

  friend class boost::serialization::access; 

 

  template<class Archive> 

  void serialize(Archive & ar, const unsigned int version) 

  { 

    ar & boost::serialization::base_object 

       <gridpack::component::BaseBranchComponent>(*this) 

       & p_original_idx1 

       & p_original_idx2; 

  } 

 

}; 

typedef network::BaseNetwork<HWBus, HWBranch > HWNetwork; 

}     // hello_world 

}     // gridpack 

#endif 

The HWBus class has one private member, p_original_idx, which is the index of the bus in 

the network configuration file. Similarly, the HWBranch class has two private members, 

p_original_idx1 and p_original_idx2, representing the buses at the “from” and “to” 

ends of the branch. The name of the file containing this code is hw_components.hpp. The 



122 
 

first two lines of the file are the standard preprocessor protection flags that guarantee that any 

declarations in this file only appear in another file a single time. The next two lines include the 

Boost smart pointer header file and the header files from the GridPACK framework. The next 

two lines declare that all functions and classes in the file are in the 

gridpack::hello_world namespace. The use of namespaces is up to the user and other 

choices are possible. The declaration of the HWBus class inherits from the 

BaseBusComponent class so all functions in the BaseBusComponent class are available 

to HWBus. BaseBusComponent also provides some virtual functions, along with their default 

implementations, that can be overwritten in HWBus. Two of these are the load and 

serialWrite functions. Only these functions are used in the “Hello world” application, the 

remaining functions in the bases classes are represented by the default implementations. Inside 

HWBus are declarations for the constructor, destructor, load and serialWrite functions. 

These will be implemented in the hw_components.cpp file. 

The final component in HWBus is the implementation of the serialize method. This method is 

used when copying the class from one processor to another and allows the program to move all 

the data associated with a particular instance of HWBus to another processor. The friend 

declaration means that HWBus has access to protected methods and data in 

boost::serialization::access and the templated serialization function is used to 

declare all internal data members that need to be transferred with the HWBus instance if it is 

moved from on processor to another. These elements include whatever base class HWBus may be 

derived from, which is represented by the element 

boost::serialization::base_object<gridpack::component 

     ::BaseBusComponent>(*this) 

The remaining data element is p_original_idx. The variable ar of type Archive is 

appended to using the operator &. In this case the data appended to ar is any serialized data 

coming from the base class and the variable p_original_idx. The serialization function is 

recursive, so including the base class is enough to guarantee that any variables beneath that are 

also included in the serialization. 

The declaration for HWBranch is very similar. The only major difference is that there are two 

private variables representing the buses at either end of the branch and these must both be 

included in the serialize function. 

The bottom of the file contains a typedef declaration for a network using HWBus and 

HWBranch for it bus and branch classes. This is a convenience and makes it easier to define 

other functions and classes in the application. 



123 
 

The hw_components.cpp file contains the actual implementation of the functions declared in 

hw_components.hpp. The declarations for STL vectors and iostreams and the 

hw_components.hpp file are included at the top of the file so that all functions in the class 

are defined. For HWBus, the constructor and destructor are trivial and are given by 

gridpack::hello_world::HWBus::HWBus() 

{ 

  p_original_idx = 0; 

} 

gridpack::hello_world::HWBus::~HWBus() 

{ 

} 

The load function is more interesting and is designed to transfer data that was read in from the 

network configuration file to the internal parameters of the bus. In this case, there is only one 

internal parameter, so load is fairly simple. The bus ID is stored in the variable BUS_NUMBER, 

so the load implemention is 

void gridpack::hello_world::HWBus::load(const 

     boost::shared_ptr<gridpack::component::DataCollection> &data) 

{ 

   data->getValue(BUS_NUMBER,&p_original_idx); 

} 

All the parameters associated with the bus that came from the network configuration file are 

stored in the data DataCollection object, so the getValue statement is used to get the 

value from data and assign it to p_original_index. A completely listing of all variables 

that might be found in a DataCollection object can be found in the dictionary.hpp file 

located in the src/parser directory. 

The serialWrite function returns a string with a message from the bus if called by some 

other program (in this case an instance of SerialBusIO). For “Hello world”, the bus reports 

back the bus index using the function 

bool gridpack::hello_world::HWBus::serialWrite(char *string, 

        const int bufsize, const char *signal) 

{ 

  sprintf(string,"Hello world from bus %d\n",p_original_idx); 

  return true; 

} 

For this case, both the incoming variables bufsize and signal are ignored since “Hello 

world” only has one type of output and it is guaranteed to fit in the buffer, but both variables 



124 
 

could be used in more complicated implementations. The bufsize variable can be used to 

make sure that the string does not exceed an internal buffer size and signal can by used to 

produce different outputs depending on what the actual contents of signal are. For the 

serialWrite implementations described for this application, guaranteeing that the stings fit 

inside the buffer  is straightforward, since all strings are the same size. For real applications, this 

may not be the case. For example, when printing out generator properties, the strings from buses 

can vary in size because the number of generators on a bus can vary. 

The implementations of the functions in HWBranch are similar. The constructor and destructor 

are 

gridpack::hello_world::HWBranch::HWBranch(void) 

{ 

  p_original_idx1 = 0; 

  p_original_idx2 = 0; 

} 

gridpack::hello_world::HWBranch::~HWBranch(void) 

{ 

} 

The load function is given by 

void gridpack::hello_world::HWBranch::load( 

    const boost::shared_ptr<gridpack::component::DataCollection> 

&data) 

{ 

  data->getValue(BRANCH_FROMBUS,&p_original_idx1); 

  data->getValue(BRANCH_TOBUS,&p_original_idx2); 

} 

This is similar to the implementation of the load function for HWBus, except that the internal 

data members are mapped to the values of the BRANCH_FROMBUS and BRANCH_TOBUS 

elements of the data collection object. The serialWrite function is 

bool gridpack::hello_world::HWBranch::serialWrite(char *string, 

    const int bufsize, const char *signal) 

{ 

  sprintf(string, 

      "Hello world from the branch connecting bus %d to bus %d\n", 

      p_original_idx1, p_original_idx2); 

  return true; 

} 



125 
 

Every branch prints out a string describing the branch in terms of the bus IDs at each end of the 

branch. Again, the incoming bufsize and signal variables are ignored in this case and it is 

assumed that the buffer size assigned to the SerialBranchIO object when it is instantiated is 

sufficiently large to guarantee that all strings from every branch will fit.  

The implementation of the factory class for the “Hello world” application is straightforward, 

since the class only needs the functionality in the BaseFactory class. The complete class is given 

by 

#ifndef _hw_factory_h_ 

#define _hw_factory_h_ 

 

#include "boost/smart_ptr/shared_ptr.hpp" 

#include "gridpack/include/gridpack.hpp" 

#include "hw_components.hpp" 

 

namespace gridpack { 

namespace hello_world { 

 

class HWFactory 

  : public gridpack::factory::BaseFactory<HWNetwork> { 

  public: 

    HWFactory(boost::shared_ptr<HWNetwork> network) 

      : gridpack::factory::BaseFactory<HWNetwork>(network) 

    { 

    } 

    ~HWFactory() {} 

}; 

} // hello_world 

} // gridpack 

#endif 

This class is defined in the hw_factory.hpp file. Because the class is so simple, the complete 

class declaration is given in hw_factory.hpp and there is no corresponding .cpp file. In 

addition to including the gridpack.hpp header, this file also includes 

hw_components.hpp, so it has the definitions of HWNetwork. The HWFactory 

constructor is used to initialize the underlying BaseFactory object with the network that is 

passed in through the argument list. That is the only functionality that is defined in this class. 

The application class that is built on top of the component and factory classes consists of the 

class 



126 
 

#ifndef _hw_app_h_ 

#define _hw_app_h_ 

 

namespace gridpack { 

namespace hello_world { 

 

class HWApp 

{ 

  public: 

    HWApp(void); 

    ~HWApp(void); 

    void execute(int argc, char** argv); 

}; 

 

} // hello_world 

} // gridpack 

#endif 

This class is declared in hw_app.hpp. Apart from the constructor and destructor, there is only 

the function execute, which is used to actually run the program. This takes the standard argc 

and argv variables as arguments, which could be passed in from the top level calling program. 

The implementation of these functions are relatively simple, most of the complexity for this 

program is in defining the bus and branch classes. The implementations are defined in the file 

hw_app.cpp 

#include <iostream> 

#include "boost/smart_ptr/shared_ptr.hpp" 

#include "gridpack/include/gridpack.hpp" 

#include "hw_app.hpp" 

#include "hw_factory.hpp" 

 

gridpack::hello_world::HWApp::HWApp(void) 

{ 

} 

 

gridpack::hello_world::HWApp::~HWApp(void) 

{ 

} 

 

void gridpack::hello_world::HWApp::execute(int argc, char** argv) 



127 
 

{ 

  gridpack::parallel::Communicator world; 

  boost::shared_ptr<HWNetwork> network(new HWNetwork(world)); 

 

  std::string filename = "10x10.raw"; 

  gridpack::parser::PTI23_parser<HWNetwork> parser(network); 

  parser.parse(filename.c_str()); 

  gridpack::hello_world::HWFactory factory(network); 

  factory.load(); 

   

  gridpack::serial_io::SerialBusIO<HWNetwork> busIO(128,network); 

  busIO.header("\nMessage from buses\n"); 

  busIO.write(); 

  gridpack::serial_io::SerialBranchIO<HWNetwork> 

    branchIO(128,network); 

  branchIO.header("\nMessage from branches\n"); 

  branchIO.write(); 

} 

The top of the file contains the gridpack.hpp header as well as the application headers. The 

constructor and destructors for the HWApp class are the standard defaults, so only the execute 

function has any significant behavior. This function starts by defining a communicator on the set 

of all processors and using that to instantiate and instance of an HWNetwork. At this point the 

network exists, but it contains no buses or branches. The next step is to read in a network 

configuration file with the name 10x10.raw. This file is written using the standard PSS/E 

version 23 format. For this simple application, it is assumed that the file is available in the 

directory in which the program is being run (this file is included in the hello_world directory 

as part of the GridPACK distribution). The program creates an instance of a PTI23_parser 

and uses this to parse the configuration file. The program now has a copy of the full network 

stored internally, but the buses and nodes are not distributed in a way that is convenient for 

computation. Calling the partition method on the network redistributes all buses and branches so 

that each process has a relatively connected chunk of the network. 

The next step is to create an HWFactory instance and use this to call the base class load 

method. This method in turn calls the load method on all the individual buses and branches and 

transfers data from the data collection objects to the internal parameters of the buses and 

branches. The data collection objects were initialized with data collected from the 10x10.raw 

file when the parse function was called. The remaining lines create SerialBusIO and 

SerialBranchIO objects that are used to print out the messages from individual bus and 

branch objects. The busIO object is used to print out a header (“Message from buses”) and then 



128 
 

a message from each bus identifying itself by the bus ID defined in the PSS/E file. Similarly, the 

branchIO obect writes out a header and then a message from each branch identifying itself by 

the IDs of the buses at either end. 

The final part of the “Hello world” application is the main calling program, located in the file 

hw_main.cpp. This program consists of the lines 

#include "gridpack/include/gridpack.hpp" 

#include "hw_app.hpp" 

 

int main(int argc, char **argv) 

{ 

  gridpack::parallel::Environment env(argc, argv); 

 

  gridpack::hello_world::HWApp app; 

  app.execute(argc, argv); 

  return 0; 

} 

The program consists of a line creating a parallel environment, a line instantiating an HWApp, 

and a line calling the execute method on the application. The constructor for the parallel 

environment initializes the underlying parallel communication libraries. The destructor is called 

at the end of main and terminates all communication libraries so that the program exits cleanly. 

The HWApp instance runs the application when execute is called. A portion of the output 

looks like 

Message from buses 

Hello world from bus 1 

Hello world from bus 2 

Hello world from bus 3 

Hello world from bus 4 

Hello world from bus 5 

Hello world from bus 6 

Hello world from bus 7 

     : 

Message from branches 

Hello world from the branch connecting bus 1 to bus 2 

Hello world from the branch connecting bus 2 to bus 3 

Hello world from the branch connecting bus 3 to bus 4 

Hello world from the branch connecting bus 4 to bus 5 

Hello world from the branch connecting bus 5 to bus 6 



129 
 

    : 

Note that this output would be the same, regardless of the number of processors that are used to 

run the code. This is in spite of the fact that the distribution of buses and branches may be 

different for different numbers of processors. 

Resistor Grid Application 

The resistor grid is a more complicated example that illustrates how GridPACK can be used to 

set up equations describing a physical system and then solve the system using a linear solver. 

The physical system is a rectangular grid with resistors connecting all the nodes. Two nodes are 

chosen to be set at fixed potentials, these then drive currents through the rest of the network 

resulting in different currents on the individual branches and different voltages on the different 

buses (nodes). The system is illustrated schematically in Figure 12. 

              

Figure 12. A schematic diagram of a simple resistor grid network. The buses (nodes) in blue are 

set at fixed external voltages, the remaining bus voltages and branch currents are calculated by 

the application. 

The topology and choice of nodes held at fixed potential is determined by the network 

configuration file, as are the values of the resistance on each of the branches. The system is 

described by a set of coupled equations representing the application of Kirkoff’s law to each of 

the nodes that is not held at a fixed potential. Kirkoff’s law is expressed by the equations 



130 
 

∑ 𝑖𝛼𝛽 = 0

𝛽∈{𝛼}

 

where 𝑖𝛼𝛽 is the current flowing between nodes 𝛼 and 𝛽 and {𝛼} is the set of nodes connected 

directly to 𝛼. This current can be found from Ohm’s law 

𝑖𝛼𝛽 =
𝑉𝛼 − 𝑉𝛽

𝑅𝛼𝛽
 

Where 𝑉𝛼 and 𝑉𝛽 are the voltage potentials on nodes 𝛼 and 𝛽 and 𝑅𝛼𝛽 is the resistance on the 

branch connecting nodes 𝛼 and 𝛽. Plugging the expression for the current back into Kirkoff’s 

law gives the equation 

∑
𝑉𝛼 − 𝑉𝛽

𝑅𝛼𝛽
= 𝑉𝛼 ∑

1

𝑅𝛼𝛽
𝛽∈{𝛼}

− ∑
𝑉𝛽

𝑅𝛼𝛽
𝛽∈{𝛼}

= 0

𝛽∈{𝛼}

 

The unknowns in this system are the potentials 𝑉𝛼. Kirkoff’s law applies to any node that does 

not have an applied value of the potential. The nodes that do have a fixed potential appear as part 

of the right hand side vector. Assuming that any node with a non-fixed value of the potential is 

attached to at most one fixed node, then the 𝛼th element of the right hand side vector is 

𝑉𝜷
𝟎

𝑅𝛼𝛽
 

where 𝑉𝜷
𝟎 is the value of the fixed potential on node 𝛽 and 𝛼 is attached to 𝛽. If 𝛼 is not attached 

to 𝛽, then the element is zero. The voltages can be evaluated by solving the matrix equation 

𝐶̿ ∙ �̅� = 𝐼0̅ 

The voltage vector and right hand side have already been discussed. The matrix elements have 

the form 

𝐶𝛼𝛼 = ∑
1

𝑅𝛼𝛽
           

𝛽∈{𝛼}

𝐶𝛼𝛽 = −
1

𝑅𝛼𝛽
 if 𝛼 ≠ 𝛽

 

With this background, we can talk about the implementation of the resistor grid application. 

Much of the basic structure of the classes has already been discussed in the previous example of 

“Hello world”, so we will limit ourselves to discussing new features. The RGBus class inherits 



131 
 

from the BaseBusComponent class and implements the following functions (in addition to 

the constructor and destructor) 

void load(const boost::shared_ptr 

  <gridpack::component::DataCollection> &data); 

bool isLead() const; 

double voltage() const; 

bool matrixDiagSize(int *isize, int *jsize) const; 

bool matrixDiagValues(ComplexType *values); 

bool vectorSize(int *isize) const; 

bool vectorValues(ComplexType *values); 

void setValues(gridpack::ComplexType *values); 

int getXCBufSize(); 

void setXCBuf(); 

bool serialWrite(char *string, const int bufsize, 

  const char *signal = NULL); 

In addition, the RGBus class has three private members 

bool p_lead; 

double *p_voltage; 

double p_v; 

The variable p_lead keeps track of whether a bus has a fixed voltage applied to it. In order to 

correctly calculate the currents, it is necessary to exchange voltages at the end of the calculation. 

The voltages at each bus are stored in an exchange buffer that can be accessed by the pointer 

p_voltage. The voltages in the external PSS/E file are read in before the exchange buffer is 

allocated, so to make sure there is a variable to store the value, the variable p_v is also included 

as a private member. In addition to implementing load and serialWrite, the RGBus class 

implements several functions in the MatVecInterface, as well as two functions that are 

unique to this class. 

Similarly, the RGBranch class implements the functions 

void load(const boost::shared_ptr 

  <gridpack::component::DataCollection> &data); 

double resistance(void) const; 

bool matrixForwardSize(int *isize, int *jsize) const; 

bool matrixReverseSize(int *isize, int *jsize) const; 

bool matrixForwardValues(ComplexType *values); 

bool matrixReverseValues(ComplexType *values); 

bool serialWrite(char *string, const int bufsize, 



132 
 

  const char *signal = NULL); 

and has the private member 

double p_resistance; 

The RGBus load method has the implementation 

void gridpack::resistor_grid::RGBus::load(const 

         boost::shared_ptr<gridpack::component::DataCollection> &data) 

{ 

   int type; 

   data->getValue(BUS_TYPE,&type); 

   if (type == 2) { 

     p_lead = true; 

     data->getValue(BUS_BASEKV,&p_v); 

   } 

} 

The PSS/E file that is used to run this application has been configured so that the bus type 

parameter is set to 2 if the bus has a fixed voltage and the value of the voltage is stored in the 

BUS_BASEKV variable. The private member p_lead is initialized to false in the RGBus 

constructor and p_v is initialized to zero. In the load method, the bus type is assigned from the 

BUS_TYPE variable in the data collection. If it is 2, the bus has a fixed value of the potential and 

p_lead is set to true. The value of p_v is assigned to whatever is stored in the BUS_BASEKV 

variable when the bus type is 2. The contents of p_v will eventually be mapped to p_voltage, 

once the exchange buffers are allocated. 

The load function for RGBranch simply assigns the data collection variable BRANCH_R to the 

private member p_resistance. 

void gridpack::resistor_grid::RGBranch::load( 

    const boost::shared_ptr 

    <gridpack::component::DataCollection> &data) 

{ 

  data->getValue(BRANCH_R,&p_resistance,0); 

} 

Once the bus and branch private members have been set using the load methods, the values can 

be recovered by other objects using the accessors isLead, voltage, and resistance. 

These functions are used in the math interface implementations to calculate values of the matrix 

elements and right hand side vectors and have the relatively simple forms 



133 
 

bool gridpack::resistor_grid::RGBus::isLead() const 

{ 

  return p_lead; 

} 

double gridpack::resistor_grid::RGBus::voltage() const 

{ 

  return *p_voltage; 

} 

double gridpack::resistor_grid::RGBranch::resistance(void) const 

{ 

  return p_resistance; 

} 

Note that the voltage function is returning the contents of p_voltage, which will contain 

up-to-date values of the voltage once the calculation begins. 

The diagonal matrix block routines in the bus class have the implementations 

bool gridpack::resistor_grid::RGBus::matrixDiagSize(int *isize, 

   int *jsize) const 

{ 

  if (!p_lead) { 

   *isize = 1; 

   *jsize = 1; 

   return true; 

  } else { 

    return false; 

  } 

} 

bool gridpack::resistor_grid::RGBus::matrixDiagValues( 

   ComplexType *values) 

{ 

  if (!p_lead) { 

    gridpack::ComplexType ret(0.0,0.0); 

    std::vector<boost::shared_ptr<BaseComponent> > branches; 

    getNeighborBranches(branches); 

    int size = branches.size(); 

    int i; 

    for (i=0; i<size; i++) { 

      gridpack::resistor_grid::RGBranch *branch 

        = dynamic_cast<gridpack::resistor_grid::RGBranch*> 



134 
 

          (branches[i].get()); 

      ret += 1.0/branch->resistance(); 

    } 

    values[0] = ret; 

    return true; 

  } else { 

    return false; 

  } 

} 

The matrixDiagSize routine returns a single element in the values array if the bus is not a 

lead with a fixed voltage, otherwise it returns false and there are no values in the values array. 

The matrixDiagValues function sets the first element of the values array equal to the 

sum of the reciprocal of the resistances on all the attached branches, if the bus is not a lead. To 

calculate this quantity, it starts by calling the getNeighborBranches function to get a list of 

pointers to attached branches. These pointers are all of type BaseComponent, so they need to 

be cast to pointers of type RGBranch before functions like resistance can be called on 

them. This is done by first calling the get function on the shared_ptr to the 

BaseComponent object to get a bare pointer to the neighboring branch and then doing a 

dynamic cast to a pointer of type RGBranch. The resistance method can now by called on the 

RGBranch pointer to get the resistance of the branch and use it to calculate the contribution to 

the diagonal matrix element. This value is assigned to values[0]. If the bus is a lead, then no 

values are calculated and the function returns false. It is also worth noting that this function will 

only be called on buses that are local to the process, so each bus that evaluates a diagonal matrix 

element will have a complete set of branches attached to it. This is not the case for ghost buses. 

These have only one branch attached to them, no matter how many branches are attached to it in 

the original network. 

The off-diagonal elements are calculated by the branch components in the functions 

matrixForwardSize, matrixReverseSize, matrixForwardValues, and 

matrixReverseValues. The matrix 𝐶̿ for the resistor grid problem is completely 

symmetric, so in this case, the forward and reverse calculations are identical. For realistic power 

problems, this is not generally true, and the forward and reverse functions will have different 

implementations. The forward functions are described below, the implementation of the reverse 

functions is identical. The branch forward size and value functions are 

bool gridpack::resistor_grid::RGBranch::matrixForwardSize( 

   int *isize, int *jsize) const 

{ 

  gridpack::resistor_grid::RGBus *bus1 



135 
 

    = dynamic_cast<gridpack::resistor_grid::RGBus*>(getBus1().get()); 

  gridpack::resistor_grid::RGBus *bus2 

    = dynamic_cast<gridpack::resistor_grid::RGBus*>(getBus2().get()); 

  if (!bus1->isLead() && !bus2->isLead()) { 

    *isize = 1; 

    *jsize = 1; 

    return true; 

  } else {  

    return false; 

  } 

} 

bool gridpack::resistor_grid::RGBranch::matrixForwardValues( 

   ComplexType *values) 

{ 

  gridpack::resistor_grid::RGBus *bus1 

    = dynamic_cast<gridpack::resistor_grid::RGBus*>(getBus1().get()); 

  gridpack::resistor_grid::RGBus *bus2 

    = dynamic_cast<gridpack::resistor_grid::RGBus*>(getBus2().get()); 

  if (!bus1->isLead() && !bus2->isLead()) { 

    values[0] = -1.0/p_resistance; 

    return true; 

  } else { 

    return false; 

  } 

} 

Before these functions can calculate return values, they must first determine if one of the buses at 

either end of the branch is a lead bus. To do this, the functions need to get pointers to the “from” 

and “to” buses at either end of the branch. They can do this through the getBus1 and 

getBus2 calls in the BaseBranchComponent class which return pointers of type 

BaseComponent. These pointers can then be converted to RGBus pointers by a dynamic cast. 

The isLead functions can be called to find out if either bus is a lead bus. If neither bus is a lead 

bus, the size of the off-diagonal block is returned as a 1x1 matrix and the off-diagonal matrix 

element is calculated and returned in values[0]. Otherwise both functions return false to 

indicate that there is no contribution to the matrix from this branch. 

In addition to calculating values of the matrix 𝐶̿, it is also necessary to set up the right hand side 

vector. This is done via the functions vectorSize and vectorValues defined on the buses. 

Only buses that are not lead buses contribute to the right hand side vector. On the other hand, the 



136 
 

only non-zero values in the right hand side vector come from lead buses that are attached to non-

lead buses. The vectorSize function has the implementation 

bool gridpack::resistor_grid::RGBus::vectorSize(int *isize) const 

{ 

  if (!p_lead) { 

    *isize = 1; 

    return true; 

  } else { 

    return false; 

  } 

} 

If a bus is not a lead bus, it contributes a single value, otherwise it does not and the function 

returns false. The vectorValues function is a bit more complicated. It has the form 

bool gridpack::resistor_grid::RGBus::vectorValues(ComplexType *values) 

{ 

  if (!p_lead) { 

    std::vector<boost::shared_ptr<BaseComponent> > branches; 

    getNeighborBranches(branches); 

    int size = branches.size(); 

    int i; 

    gridpack::ComplexType ret(0.0,0.0); 

    for (i=0; i<size; i++) { 

      gridpack::resistor_grid::RGBranch *branch 

        = dynamic_cast<gridpack::resistor_grid::RGBranch*> 

          (branches[i].get()); 

      gridpack::resistor_grid::RGBus *bus1 

        = dynamic_cast<gridpack::resistor_grid::RGBus*> 

          (branch->getBus1().get()); 

      gridpack::resistor_grid::RGBus *bus2 

        = dynamic_cast<gridpack::resistor_grid::RGBus*> 

          (branch->getBus2().get()); 

      if (bus1 != this && bus1->isLead()) { 

        ret += bus1->voltage()/branch->resistance(); 

      } else if (bus2 != this && bus2->isLead()) { 

        ret += bus2->voltage()/branch->resistance(); 

      } 

    } 

    values[0] = ret; 



137 
 

    return true; 

  } else { 

    return false; 

  } 

} 

The vectorValues function starts by getting a list of branches that are attached to the calling 

bus and then looping over the list. Pointers to each of the branches, as well as the buses at each 

end of the branch are obtained using the getBus1 and getBus2 functions. It is still necessary 

to determine which end of the branch is opposite the calling bus and this can be done by 

checking the conditions bus1 != this and bus2 != this. One of these will be true for 

the bus opposite the calling bus. If this bus is also a lead bus, then a contribution is added to the 

right hand side vector element. The contribution can be calculated by getting the value of the 

fixed voltage from the lead bus and dividing it by the resistance of the branch. These values can 

be obtained by calling the bus voltage function and the branch resistance function. The 

*p_voltage value of the calling bus is not used. If the calling bus is a lead bus, then the 

function returns false. 

The last function related to vectors that is implemented in the MatVecInterface is the 

setValues function 

void gridpack::resistor_grid::RGBus::setValues( 

   gridpack::ComplexType *values) 

{ 

  if (!p_lead) { 

    p_voltage = real(values[0]); 

  } 

} 

Once the voltages have been calculated by solving Kirkoff’s equations, it is necessary to have 

some way of pushing these back on the buses so they can be written to output. The results of the 

linear solver are returned in the values array. The number of values in this array corresponds 

to the number of values contributed to the right hand side vector (in this case 1 if the bus is not a 

lead). Thus, the value is assigned to the internal p_voltage variable if the bus is not a lead 

bus. This function will be called by all buses as part of the mapToBus function in the 

BusVectorMap. 

In order to correctly calculate the current on all branches for export to standard out, it is 

necessary to have up-to-date values of the voltage on all buses, including ghost buses. This 

requires a data exchange at the end of the calculation. To enable this exchange, the 



138 
 

getXCBufSize and setXCBuf functions must be implemented in the RGBus class. These 

functions have the form 

int gridpack::resistor_grid::RGBus::getXCBufSize() 

{ 

  return sizeof(double); 

} 

void gridpack::resistor_grid::RGBus::setXCBuf(void *buf) 

{ 

  p_voltage = static_cast<double*>(buf); 

  *p_voltage = p_v; 

} 

The only variable that needs to be exchange is the value of the potential, so getXCBufSize 

returns the number of bytes in a single double precision variable. The setXCBuf function 

assigns the buffer pointed to by the variable buf to the internal data member p_voltage. At 

the same time, it initializes the contents of p_voltage to the variable p_v, which contains the 

voltage read in from the external PSS/E file. 

The serialWrite functions on the buses and branches are used to write the voltages and 

currents on all buses and branches to standard output. The serialWrite function on the buses 

has the form 

bool gridpack::resistor_grid::RGBus::serialWrite(char *string, 

    const int bufsize, const char *signal) 

{ 

  if (p_lead) { 

    sprintf(string,"Voltage on bus %d: %12.6f (lead)\n", 

        getOriginalIndex(),*p_voltage); 

  } else { 

    sprintf(string,"Voltage on bus %d: %12.6f\n", 

        getOriginalIndex(),*p_voltage); 

  } 

  return true; 

} 

All buses return a string so the function always returns true. The printout consists of the bus 

index, obtained with the getOriginalIndex function, and the value of the voltage on the 

bus. Lead buses are marked in the output, indicating that the voltage is the same as that specified 

in the input file, the remaining voltages are calculated by solving Kirkoff’s equations. For 



139 
 

branches, the serialWrite function is used to calculate and print the current flowing across each 

branch 

bool gridpack::resistor_grid::RGBranch::serialWrite(char *string, 

const int 

    bufsize,  const char *signal) 

{ 

 

  gridpack::resistor_grid::RGBus *bus1 

    = dynamic_cast<gridpack::resistor_grid::RGBus*>(getBus1().get()); 

  gridpack::resistor_grid::RGBus *bus2 

    = dynamic_cast<gridpack::resistor_grid::RGBus*>(getBus2().get()); 

  double v1 = bus1->voltage(); 

  double v2 = bus2->voltage(); 

  double icur = (v1 - v2)/p_resistance; 

  sprintf(string,"Current on line from bus %d to %d is: %12.6f\n", 

      bus1->getOriginalIndex(),bus2->getOriginalIndex(),icur); 

  return true; 

} 

All branches report the current flowing through them, so this function also returns true for all 

branches. To calculate the current, it is necessary to get the value of the voltages at both ends of 

the branch using methods already described and then calculate the current by dividing the 

difference in voltages by the resistance of the branch. The print line prints the current and 

uniquely identifies each branch by including the IDs of the buses at either end. 

The factory class for resistor grid application only uses functionality in the BaseFactory class and 

has the simple form 

class RGFactory 

  : public gridpack::factory::BaseFactory<RGNetwork> { 

  public: 

    RGFactory(boost::shared_ptr<RGNetwork> network) 

      : gridpack::factory::BaseFactory<RGNetwork>(network) 

    { 

    } 

    ~RGFactory() {} 

}; 

Again, the BaseFactory class from which RGFactory inherits is initialized by passing the 

network argument through the constructor. The declaration for this class is in the file 

rg_factory.hpp. There is no corresponding .cpp file. 



140 
 

The RGApp class declaration is also simple and consists of the functions 

class RGApp 

{ 

  public: 

    RGApp(void); 

    ~RGApp(void); 

    void execute(int argc, char** argv); 

}; 

Again, arguments from the top level main program can be passed through to the execute 

function, which is responsible for implementing the actual resistor grid calculation. The RGApp 

class declaration is contained in the rg_app.hpp file. The implementation is contained in the 

rg_app.cpp file. The only complicated function in the implementation is execute, which 

consists of 

void gridpack::resistor_grid::RGApp::execute(int argc, char** argv) 

{ 

  // read configuration file 

  gridpack::parallel::Communicator world; 

  gridpack::utility::Configuration *config = 

    gridpack::utility::Configuration::configuration(); 

  config->open("input.xml",world); 

  gridpack::utility::Configuration::CursorPtr cursor; 

  cursor = config->getCursor("Configuration.ResistorGrid"); 

 

  // create network and read in external PTI file 

  // with network configuration 

  boost::shared_ptr<RGNetwork> network(new RGNetwork(world)); 

  gridpack::parser::PTI23_parser<RGNetwork> parser(network); 

  std::string filename; 

  if (!cursor->get("networkConfiguration",&filename)) { 

    filename = "small.raw"; 

  } 

  parser.parse(filename.c_str()); 

 

  // partition network 

  network->partition(); 

 

  // create factory and load parameters from input 

  // file to network components 



141 
 

  gridpack::resistor_grid::RGFactory factory(network); 

  factory.load(); 

 

  // set network components using factory and set up exchange 

  // of voltages between buses 

  factory.setComponents(); 

  factory.setExchange(); 

  network->initBusUpdate(); 

 

  // create mapper to generate voltage matrix 

  gridpack::mapper::FullMatrixMap<RGNetwork> vMap(network); 

  boost::shared_ptr<gridpack::math::Matrix> V = vMap.mapToMatrix(); 

 

  // create mapper to generate RHS vector 

  gridpack::mapper::BusVectorMap<RGNetwork> rMap(network); 

  boost::shared_ptr<gridpack::math::Vector> R = rMap.mapToVector(); 

 

  // create solution vector by cloning R 

  boost::shared_ptr<gridpack::math::Vector> X(R->clone()); 

 

  // create linear solver and solve equations 

  gridpack::math::LinearSolver solver(*V); 

  solver.configure(cursor); 

  solver.solve(*R, *X); 

 

  // push solution back on to buses 

  rMap.mapToBus(X); 

 

  // exchange voltages so that all buses have correct values. This 

  // guarantees that current calculations on each branch are correct 

  network->updateBuses(); 

 

  // create serial IO objects to export data 

  gridpack::serial_io::SerialBusIO<RGNetwork> busIO(128,network); 

  char ioBuf[128]; 

  busIO.header("\nVoltages on buses\n\n"); 

  busIO.write(); 

 

  gridpack::serial_io::SerialBranchIO<RGNetwork> 

    branchIO(128,network); 



142 
 

  branchIO.header("\nCurrent on branches\n\n"); 

  branchIO.write(); 

} 

The beginning of the resistor grid application is more complicated than “Hello world” in that it 

uses an input file to control the properties of the linear solver that is used to solve current 

equations. To read in the input file, the application starts by creating a communicator on the set 

of all processors. Only one configuration object is available to the application and the execute 

function gets a pointer to this instance by calling the static function 

Configuration::configuration(). This pointer can then be used to read in the input 

file, “input.xml”, across all processes in the communicator world using the open method. 

All processors now have access to the contents of input.xml. The input file contains two 

pieces of information, the name of the PSS/E formatted resistor grid configuration file and the 

parameters for the linear solver. The input file has the form 

<?xml version="1.0" encoding="utf-8"?> 

<Configuration> 

  <ResistorGrid> 

    <networkConfiguration> small.raw </networkConfiguration> 

    <LinearSolver> 

      <PETScOptions> 

        -ksp_view 

        -ksp_type richardson 

        -pc_type lu 

        -pc_factor_mat_solver_package superlu_dist 

        -ksp_max_it 1 

      </PETScOptions> 

    </LinearSolver> 

  </ResistorGrid> 

</Configuration> 

The resistor grid file name can be obtained by getting a cursor pointer that is pointed at the 

ResistorGrid block in the input file by using the getCursor function and then using the 

get function to retrieve the actual file name located in the networkConfiguration field. 

If no file is specified in the input deck, the file name defaults to “small.raw”. At the same 

time, an RGNetwork object is instantiated and used to initialize on instance of 

PTI23_parser. This can then read in the resistor grid configuration file using the parse 

function. 

At this point, all buses and branches have been created, but they may not be distributed in a way 

that supports computation. The network partition function is called to redistribute the 



143 
 

network so that each process has maximal connections between components located on the 

process and minimal connections to components located on other processes. The ghost buses and 

branches are also added by the partition function. 

After partitioning, an RGFactory object is created and the base class load method is called to 

initialize the internal data elements on each bus and branch in the network. This function 

initializes both locally held components as well as ghost components, so there is no need for a 

data exchange to guarantee that all components are up to date. The factory also calls the base 

class setComponents method, which determines several types of internal indices that are 

used to set up calculations. The buffers needed to exchange data at the end of the calculation are 

set up by a call to the factory setExchange method. Additional internal data structures needed 

for the data exchange between buses are created by calling the network initBusUpdate 

method. No data exchanges are needed between branch components. 

The next step in the algorithm is to create the matrix 𝐶̿, the right hand side vector and a vector to 

contain the solution. Two separate mappers are needed, one for the matrix 𝐶̿ and the other for the 

right hand side vector. For the matrix, the code creates an instance of a FullMatrixMap that 

is initialized with the resistor grid network. The mapToMatrix function is called to create the 

matrix V. The right hand side vector is created by creating instance of a BusVectorMap and 

using the mapToVector function to create the vector R. The solution vector X does not need to 

be initialized to any particular value, it just needs to be the same size as R so it is created by 

having R call the clone method in the Vector class and using the result to initialize X in the 

Vector class constructor. 

Once V, R, and X are available, the equations can be solved using a linear solver. The linear 

solver is created by initializing an instance of LinearSolver with the matrix V. The solver 

class configure method can be used to transfer solver parameters in the LinearSolver 

block in input.xml to the solver. The cursor pointer  that is taken as an argument to 

configure is already pointing to the ResistorGrid block in the input file, so configure 

will pick up any parameters in a LinearSolver block within the ResistorGrid block. 

After configuring the solver, the solution vector can be obtained by calling the solve method 

and the resulting voltages are pushed back to buses using the mapToBus method in the 

BusVectorMap class. 

After calling mapToBus, all locally held buses have correct values of the voltage, but ghost 

buses still have their initial values. To correct the voltages on ghost buses, it is necessary to call 

the network updateBuses function. The buffers p_voltage now contain correct values of 

the voltage on all buses. 

The only remaining step is to write the results to standard output. The voltages are written by 

creating an instance of SerialBusIO. The maximum buffer size is set to 128 characters, 



144 
 

which is enough to hold any lines of output coming from the buses. A header labeling the bus 

output is written to standard out using the header method and then bus voltages are written by 

calling write. Similarly, output from the branches can be written by creating an instance of 

SerialBranchIO, writing a header using the header method and then calling write. 

Since only one type of output comes from the branches and buses, no character string is passed 

in as arguments to the write functions. The execute function has now completed all tasks 

associated with solving the resistor grid problem and passes control back to the main calling 

program. 

The main calling program is relatively simple and consists of the code 

int main(int argc, char **argv) 

{ 

  gridpack::parallel::Environment env(argc, argv); 

  gridpack::math::Initialize(); 

  gridpack::resistor_grid::RGApp app; 

  app.execute(argc, argv); 

  gridpack::math::Finalize(); 

  return 0; 

} 

The parallel computing environment is set up by creating an instance of Environment. The 

computing environment is also cleaned up at the end of the calculation when the destructor for 

this object is called. The math libraries are initialized by a call to the static Initialize 

method and cleaned up at the end of the calculation by a call to Finalize. The only remaining 

calls are to create an instance of an RGApp and call its execute method. 

A portion of the output from the resistor grid calculation is the following 

GridPACK math module configured on 8 processors 

    : 

Voltages on buses 

 

Voltage on bus 1:     1.000000 (lead) 

Voltage on bus 2:     0.667958 

Voltage on bus 3:     0.467469 

Voltage on bus 4:     0.329598 

Voltage on bus 5:     0.227289 

Voltage on bus 6:     0.148733 

Voltage on bus 7:     0.088491 

    : 



145 
 

Current on branches 

 

Current on line from bus 1 to 2 is:    20.000000 

Current on line from bus 2 to 3 is:     4.009776 

Current on line from bus 3 to 4 is:     2.757436 

Current on line from bus 4 to 5 is:     2.046167 

Current on line from bus 5 to 6 is:     4.545785 

    : 

The first line is written by the call to the math library Initialize function and reports on the 

number of processors being used in the calculation. This information is useful in keeping track of 

the performance characteristics of different calculations. Some information from the solvers is 

usually printed after this. At the end of the calculation, the values of the voltages on the buses are 

printed out and then the current on each of the branches. The buses with externally applied 

voltages are also identified in the output. 

Contingency Analysis 

The contingency analysis application will be described in detail since it provides a relatively 

compact demonstration of some of the advanced features of GridPACK. This application is built 

entirely around the power flow module, so it has no network component classes of its own. The 

main functionality is located in the CADriver class that consists of two methods (other than the 

constructor and destructor). One function is used to read in a list of contingencies and convert 

them to a corresponding Contingency data structure and the other function executes the 

contingency analysis calculation. These two functions will be discussed in detail. 

The function for reading in the contingencies and converting them to a list of Contingency data 

structures has the form 

std::vector<gridpack::powerflow::Contingency> getContingencies( 

  gridpack::utility::Configuration::ChildCursors contingencies) 

The Contingency data structures are defined in as part of the power flow module and exist in 

the gridpack::powerflow namespace. The list of cursors represented by the contingencies 

variable is obtained by the calling program before calling this function. The function itself is 

  std::vector<gridpack::powerflow::Contingency> ret; 

  int size = contingencies.size(); 

  int i, idx; 

  gridpack::utility::StringUtils utils; 

  for (idx = 0; idx < size; idx++) { 

    std::string ca_type; 

    contingencies[idx]->get("contingencyType",&ca_type); 



146 
 

    std::string ca_name; 

    contingencies[idx]->get("contingencyName",&ca_name); 

    if (ca_type == "Line") { 

      std::string buses; 

      contingencies[idx]->get("contingencyLineBuses",&buses); 

      std::string names; 

      contingencies[idx]->get("contingencyLineNames",&names); 

      std::vector<std::string> string_vec =  

          utils.blankTokenizer(buses); 

      std::vector<int> bus_ids; 

      for (i=0; i<string_vec.size(); i++) { 

        bus_ids.push_back(atoi(string_vec[i].c_str())); 

      } 

      string_vec.clear(); 

      string_vec = utils.blankTokenizer(names); 

      std::vector<std::string> line_names; 

      for (i=0; i<string_vec.size(); i++) { 

        line_names.push_back(utils.clean2Char(string_vec[i])); 

      } 

      if (bus_ids.size() == 2*line_names.size()) { 

        gridpack::powerflow::Contingency contingency; 

        contingency.p_name = ca_name; 

        contingency.p_type = Branch; 

        int i; 

        for (i = 0; i < line_names.size(); i++) { 

          contingency.p_from.push_back(bus_ids[2*i]); 

          contingency.p_to.push_back(bus_ids[2*i+1]); 

          contingency.p_ckt.push_back(line_names[i]); 

          contingency.p_saveLineStatus.push_back(true); 

        } 

        ret.push_back(contingency); 

      } 

    } else if (ca_type == "Generator") { 

      std::string buses; 

      contingencies[idx]->get("contingencyBuses",&buses); 

      std::string gens; 

      contingencies[idx]->get("contingencyGenerators",&gens); 

      std::vector<std::string> string_vec = 

          utils.blankTokenizer(buses); 

      std::vector<int> bus_ids; 



147 
 

      for (i=0; i<string_vec.size(); i++) { 

        bus_ids.push_back(atoi(string_vec[i].c_str())); 

      } 

      string_vec.clear(); 

      string_vec = utils.blankTokenizer(gens); 

      std::vector<std::string> gen_ids; 

      for (i=0; i<string_vec.size(); i++) { 

        gen_ids.push_back(utils.clean2Char(string_vec[i])); 

      } 

      if (bus_ids.size() == gen_ids.size()) { 

        gridpack::powerflow::Contingency contingency; 

        contingency.p_name = ca_name; 

        contingency.p_type = Generator; 

        int i; 

        for (i = 0; i < bus_ids.size(); i++) { 

          contingency.p_busid.push_back(bus_ids[i]); 

          contingency.p_genid.push_back(gen_ids[i]); 

          contingency.p_saveGenStatus.push_back(true); 

        } 

        ret.push_back(contingency); 

      } 

    } 

  } 

  return ret; 

This function is designed to parse input of the form 

<?xml version="1.0" encoding="utf-8"?> 

<ContingencyList> 

  <Contingency_analysis> 

    <Contingencies> 

      <Contingency> 

        <contingencyType>Line</contingencyType> 

        <contingencyName>CTG1</contingencyName> 

        <contingencyLineBuses> 13 14</contingencyLineBuses> 

        <contingencyLineNames> B1 </contingencyLineNames> 

      </Contingency> 

      <Contingency> 

        <contingencyType>Generator</contingencyType> 

        <contingencyName>CTG2</contingencyName> 

        <contingencyBuses> 2  </contingencyBuses> 



148 
 

        <contingencyGenerators>1 </contingencyGenerators> 

      </Contingency> 

    </Contingencies> 

  </Contingency_analysis> 

</ContingencyList> 

The contingencies list in the argument consists of a vector of Configuration module 

cursors, each of which is pointing to one of the Contingency blocks in this input. 

The first few lines are used to create the return list, determine the number of contingencies in the 

ChildCursors list and create a StringUtils object that can be used to parse the input. 

The function then loops over all cursors in the contingencies list. All contingencies should 

contain the contingencyType and contingencyName field, so these values are obtained 

using the get function from the Configuration module. The type can be either “Line” or 

“Generator”. Based on the type, the function bifurcates into two branches. The “Line” 

branch looks for the strings corresponding to contingencyLineBuses and 

contingencyLineNames and assigns these to the string variables buses and names. More 

than one transmission element may be involved in the contingency. The StringUtils 

blankTokenizer function is used to parse the buses string into a list of strings that can then 

be converted to a list of integers. These represent the original indices of the buses at each end of 

the branch. The names string is also converted to a list representing the character tag identifying 

the individual transmission element between the two buses. This is then reformatted to a 

consistent 2-character format using the StringUtils clean2Char function. The string 

vector string_vec is used to hold the results from blankTokenizer, and the final list of 

integers and character tags are stored in the variables bus_ids and line_names. Each 

transmission element is characterized by two buses and a character tag, so the number of bus IDs 

should be twice the number of tags. If this condition is met, then the contingency is assumed to 

be well formed and a Contingency struct is created for it. After copying the data stored in the 

variables ca_type, ca_name, bus_ids and line_names, this contingency is added to the 

return variable ret. 

The “Generator” branch is similar to the “Line” branch. The strings in the 

contingencyBuses and contingencyGenerators fields are copied into the string 

variables buses and gens. These are then converted into a list of bus IDs and generator tags 

using the blankTokenizer function and stored in the list bus_ids and gen_ids. A generator is 

characterized by the original index of the bus that it is associated with and the 2-character 

generator tag so the size of the bus_ids and gen_ids vectors must be equal. If this condition 

is met, then a Contingency struct is created, the contingency data is copied to it and the struct 

is added to the return variable ret. 



149 
 

After all cursor in contingencies have been processed, the getContingencies function 

returns a list of Contingency structs representing all the contingencies in the original XML 

input file. 

The execute function starts with the code block 

void gridpack::contingency_analysis::CADriver::execute(int argc, 

char** argv) 

{ 

  gridpack::parallel::Communicator world; 

  gridpack::utility::CoarseTimer *timer = 

    gridpack::utility::CoarseTimer::instance(); 

  int t_total = timer->createCategory("Total Application"); 

  timer->start(t_total); 

 

  gridpack::utility::Configuration *config 

    = gridpack::utility::Configuration::configuration(); 

  if (argc >= 2 && argv[1] != NULL) { 

    char inputfile[256]; 

    sprintf(inputfile,"%s",argv[1]); 

    config->open(inputfile,world); 

  } else { 

    config->open("input.xml",world); 

  } 

The user can pass in the name of the input file when they invoke the contingency analysis 

application, and this is transmitted via the variables argc and argv in the argument list. If an 

argument is detected, then the code will try and open a file using the argument as the filename, 

otherwise it will assume the input file is called “input.xml”. Once the input file is open, all 

processors have access to its contents. This section also creates a timing category for the 

calculation and starts the timer. The call to CoarseTime::instance returns the timer object 

and the createCategory call creates a timer category with the name “Total 

Application”. It also returns a handle to this category. The start call begins the timer. The 

timer can be started and stopped multiple times for the same category. 

The next few lines are used to parse the input file and determine the size of the communicators 

that should be used to run individual tasks. 

  gridpack::utility::Configuration::CursorPtr cursor; 

  cursor = config->getCursor("Configuration.Contingency_analysis"); 

  int grp_size; 



150 
 

  double Vmin, Vmax; 

  if (!cursor->get("groupSize",&grp_size)) { 

    grp_size = 1; 

  } 

  if (!cursor->get("minVoltage",&Vmin)) { 

    Vmin = 0.9; 

  } 

  if (!cursor->get("maxVoltage",&Vmax)) { 

    Vmax = 1.1; 

  } 

  gridpack::parallel::Communicator task_comm = world.divide(grp_size); 

A CursorPtr is defined and set to point to the contents of the Contingency_analysis 

block in the input file using the getCursor function. This block contains parameters defining 

some of the properties of the simulation. The groupSize parameter sets the size of the 

communicator on which individual power flow calculations are run. PThe power flow is not very 

scalable in GridPACK and it is usually fastest to run it on one processor so the default value is 1. 

The minVoltage and maxVoltage parameters are the limits, in p.u., for acceptable voltage 

variations on individual buses. Once the group size has been set, the world communicator is 

divided into sub communicators using the divide function. This guarantees that each 

subcommunicator contains at most the number of processes specified using groupSize (one 

subcommunicator may contain less than this number). Each process is now part of the world 

communicator and one subcommunicator. 

The next block of code creates a power flow application on each task communicator and 

initializes it. 

  boost::shared_ptr<gridpack::powerflow::PFNetwork> 

    pf_network(new gridpack::powerflow::PFNetwork(task_comm)); 

  gridpack::powerflow::PFAppModule pf_app; 

  pf_app.readNetwork(pf_network,config); 

  pf_app.initialize(); 

  pf_app.solve(); 

  pf_app.ignoreVoltageViolations(Vmin,Vmax); 

The first line creates a power flow network on the task communicator. The second line creates a 

power flow application. The readNetwork function assigns the powerflow network (which 

currently has nothing in it) to the power flow application, along with the pointer to the 

configuration module. The input file is expected to have a Powerflow block that contains 

parameters for the  power flow application. These include the location of the network 

configuration file and the type of solver that is to be used. An example of a complete input file is 



151 
 

<?xml version="1.0" encoding="utf-8"?> 

<Configuration> 

  <Contingency_analysis> 

    <contingencyList>contingencies.xml</contingencyList> 

    <groupSize>2</groupSize> 

    <maxVoltage>1.1</maxVoltage> 

    <minVoltage>0.9</minVoltage> 

  </Contingency_analysis> 

  <Powerflow> 

    <networkConfiguration> IEEE14_ca.raw </networkConfiguration> 

    <maxIteration>50</maxIteration> 

    <tolerance>1.0e-6</tolerance> 

    <LinearSolver> 

      <PETScOptions> 

        -ksp_type richardson 

        -pc_type lu 

        -pc_factor_mat_solver_package superlu_dist 

        -ksp_max_it 1 

      </PETScOptions> 

    </LinearSolver> 

  </Powerflow> 

</Configuration> 

Note that it has two blocks, Contingency_analysis and Powerflow. The parameters 

describing the contingency calculation and the location of the contingencies are located in the 

first block and the power flow parameters are located in the second block. The readNetwork 

function will read in the network configuration file and partition the network. The initialize 

function is used to initialize the network components from the DataCollection objects and 

assign exchange buffers. The call to solve is used to obtain a power solution to the base 

problem with no contingencies. Since all tasks have the same data at this point, the network 

solution is duplicated across all subcommunicators. The final call to 

ignoreVoltageViolations sets a parameter in each network component that violates the 

voltage bounds for base case. These components will be ignored in any subsequent checks for 

voltage violations. 

The next step is to read in the contingencies and convert these to a list of contingency data 

structs. 

  std::string contingencyfile; 

  if (!cursor->get("contingencyList",&contingencyfile)) { 

    contingencyfile = "contingencies.xml"; 



152 
 

  } 

  bool ok = config->open(contingencyfile,world); 

  cursor = config->getCursor( 

      "ContingencyList.Contingency_analysis.Contingencies"); 

  gridpack::utility::Configuration::ChildCursors contingencies; 

  if (cursor) cursor->children(contingencies); 

  std::vector<gridpack::powerflow::Contingency> 

    events = getContingencies(contingencies); 

  if (world.rank() == 0) { 

    int idx; 

    for (idx = 0; idx < events.size(); idx++) { 

      printf("Name: %s\n",events[idx].p_name.c_str()); 

      if (events[idx].p_type == Branch) { 

        int nlines = events[idx].p_from.size(); 

        int j; 

        for (j=0; j<nlines; j++) { 

          printf(" Line: (from) %d (to) %d (line) \'%s\'\n", 

              events[idx].p_from[j],events[idx].p_to[j], 

              events[idx].p_ckt[j].c_str()); 

        } 

      } else if (events[idx].p_type == Generator) { 

        int nbus = events[idx].p_busid.size(); 

        int j; 

        for (j=0; j<nbus; j++) { 

          printf(" Generator: (bus) %d (generator ID) \'%s\'\n", 

              events[idx].p_busid[j],events[idx].p_genid[j].c_str()); 

        } 

      } 

    } 

  } 

The location of the contingency file is contained in the contingencyList field in the input 

file. If this field is not present, the code defaults to the file name contingencies.xml. The 

contintency file is then opened using the open function in the Configuration module and a 

cursor is set to the Contingencies block within this file. The Configuration 

children function returns a list of cursor pointers that point to each of the individual 

Contingency blocks. The getContingencies function described above parses each of 

these blocks and returns a vector of contingency data structs. The contingency list is replicated 

on all processors. Process 0 is used to provide a listing of the contingencies to standard output by 

looping over the events vector returned by the getContingencies function. 



153 
 

Once the contingencies have be determined, the code next sets up a task manager on the world 

communicator and sets the number of tasks equal to the number of contingencies. 

  gridpack::parallel::TaskManager taskmgr(world); 

  int ntasks = events.size(); 

  taskmgr.set(ntasks); 

The task loop is created by defining a task_id variable and a character string buffer that is used 

inside the loop to create messages. The task manager then begins iterating over different tasks. 

  int task_id; 

  char sbuf[128]; 

  while (taskmgr.nextTask(task_comm, &task_id)) { 

    printf("Executing task %d on process %d\n",task_id,world.rank()); 

The call to nextTask takes the task communicator as one of its arguments so the value of 

task_id that is returned is the same for all processors on the communicator. This guarantees 

that each of the processors in this copy of the power flow applicatin is working on the same 

contingency. If the nextTask function returns false, the tasks have been completed and the 

code exits from the while loop. At the start of the task, the code prints out a statement to 

standard out describing which tasks are being executed by each processor. 

The next few lines in the task loop are used to open a file so that the output from each task is 

directed to a separate file. This can be used later to examine individual tasks. 

    sprintf(sbuf,"%s.out",events[task_id].p_name.c_str()); 

    pf_app.open(sbuf); 

    sprintf(sbuf,"\nRunning task on %d processes\n",task_comm.size()); 

    pf_app.writeHeader(sbuf); 

    if (events[task_id].p_type == Branch) { 

      int nlines = events[task_id].p_from.size(); 

      int j; 

      for (j=0; j<nlines; j++) { 

        sprintf(sbuf," Line: (from) %d (to) %d (line) \'%s\'\n", 

            events[task_id].p_from[j],events[task_id].p_to[j], 

            events[task_id].p_ckt[j].c_str()); 

      } 

    } else if (events[task_id].p_type == Generator) { 

      int nbus = events[task_id].p_busid.size(); 

      int j; 

      for (j=0; j<nbus; j++) { 

        sprintf(sbuf," Generator: (bus) %d (generator ID) \'%s\'\n", 



154 
 

        events[task_id].p_busid[j], 

        events[task_id].p_genid[j].c_str()); 

      } 

    } 

    pf_app.writeHeader(sbuf); 

The first line is used to create a name for the output file using the contingency name. The output 

from the power flow calculation is then redirected to this file using the power flow open 

function. Next, some information about this particular contingency is written to the file using 

some calls to the writeHeader method. This includes the number of processors used to calculate 

the contingency and the details of the contingency itself. 

The remaining lines in the while loop are used to solve the power flow equations. 

    pf_app.resetVoltages(); 

    pf_app.setContingency(events[task_id]); 

    if (pf_app.solve()) { 

      pf_app.write(); 

      bool ok = pf_app.checkVoltageViolations(Vmin,Vmax); 

      ok = ok & pf_app.checkLineOverloadViolations(); 

      if (ok) { 

        sprintf(sbuf,"\nNo violation for contingency %s\n", 

            events[task_id].p_name.c_str()); 

      } else { 

        sprintf(sbuf,"\nViolation for contingency %s\n", 

            events[task_id].p_name.c_str()); 

      } 

      pf_app.print(sbuf); 

    } 

    pf_app.unSetContingency(events[task_id]); 

    pf_app.close(); 

  } 

Before doing the calculation, all voltages are returned to the original values defined in the 

network configuration file using resetVoltages. The contingency parameters are set to the 

values specified by the task_id element in the events list using the setContingency 

method. 

The system is then solved using the power flow solve function. If the solution succeeds, the 

calculation writes out the voltages and branch power flow values to the outpuf file. The 

calculation also checks for voltage violations and line overload violations. The results of these 

checks are written to the output file for each power flow calculation. After this is complete, the 



155 
 

powerflow calculation returns all contingency related parameters to their original values using 

unSetContingency and closes the output file. This is repeated until all contingencies in the 

event list have been evaluated. 

At this point, the contingency application is essentially complete. The remaining lines of code 

  taskmgr.printStats(); 

  timer->stop(t_total); 

  if (events.size()*grp_size >= world.size()) { 

    timer->dump(); 

  } 

are used to print out a list of how many tasks were evaluated on each processor and to stop the 

timing of the “Total Application” category. The timer dump method will print statistics 

on the amount of time spent in the total application as well as reporting timings inside the power 

flow application. The check on the dump call is to verify that all processors have participated in 

at least one power flow calculation. 

Fortran 2003 Interface 
GridPACK has developed a Fortran interface that can be used to access most of the functionality 

in the framework modules. The Fortran interface makes extensive use of the object-oriented 

features in Fortran, so a compiler that supports the Fortran 2003 standard must be used if 

creating Fortran applications. The Fortran compiler must also support the iso_c_binding module, 

but this will usually be available if the compiler supports Fortran 2003. Most recent compilers 

support Fortran 2003. A working power flow application written entirely in Fortran has been 

included in the current release and demonstrates how to use the Fortran interface. The Fortran 

implementation is very similar to the C++ interface and most of the C++ documentation applies 

to the corresponding Fortran functionality. The remainder of this section will highlight the 

important differences between the C++ and Fortran interfaces. 

Because Fortran does not have any support for templates (that we know of), the Fortran interface 

cannot support multiple different kinds of networks within a single application. This means that 

only one bus and one branch class can be present in an application, so the bus and branch classes 

must support all possible types of behavior. It is still possible to have more than one network in 

an application, but all networks must be of the same type. 

The bus and branch classes in the Fortran interface are represented by the Fortran derived types 

application_bus and application_branch. These types have procedures bound to 

them, as well as internal data elements. These types are defined in the Fortran file 

component_template.F90 file that is located in the fortran/component directory. 

The application bus and branch classes can be created by modifying a copy of 

component_template.F90. The functions in the math-vector interface and the component 



156 
 

base classes are all defined in this file, along with default implementations for these functions. 

Additional data elements and procedures can be added to the bus and branch data types to create 

appropriate functionality for specific problems. 

A brief overview of the application_bus type in the component_template.F90 file 

is provided here. Similar considerations apply to the application_branch type. To use the 

component_template.F90 file it should first be copied to the directory where the 

application source code resides and renamed to something appropriate. We will use the name 

app_component.F90. Inside the component file, the Fortran types bus_xc_data, 

branch_xc_data, application_bus, application_branch are defined as part of 

the application_components module. These are the only types that need concern the 

application developer. There are also two types defined in this file called 

application_bus_wrapper and application_branch_wrapper. These are only 

used internally but must be defined in this file. They should not be modified. There is a line at 

the bottom of the app_component.F90 file that includes an external file 

component_inc.F90. This file contains many functions that are required by the interface 

and must be included in the application_components module. However, these functions 

should not be modified by the user so to avoid possible errors and to simplify the file somewhat, 

these functions are put in an include file. 

The application_bus type has four parts. These consist of 1) application-specific data 

elements, 2) data elements that must be defined in order for the component to interact with rest 

of the framework, 3) application-specific functions that are defined by the user and 4) framework 

functions that must be included in the component. The framework functions all have base 

implementations can be modified to suit the application. The only data elements that must be 

included in the application_bus type is a variable of type bus_xc_data and a pointer to 

this variable. The bus_xc_data type will be discussed further below and represents all data 

that might need to be exchanged in a bus update. 

The framework functions are directly analogous to the functions defined for the C++ 

implementation and users should refer to the documentation above to find out how these 

functions work. This section will primarily discuss differences between the Fortran and C++ 

interfaces. The Fortran compilers do not have the same name-mangling capabilities as C++ so all 

function names are preceded by either a bus_ or branch_ to distinguish between bus and 

branch versions of the functions. A few functions only appear in the bus class or the branch class 

and do not necessarily need this prefix, but to be consistent, this convention is used for all 

functions. 

Functions that are bound to the application_bus type are already listed in the 

component_template.F90. These functions consist of both a declaration within the 

application_bus type and a function or subroutine implementation within the 



157 
 

application_components module. The declarations within the application_bus 

type (after the contains keyword) have the form 

    procedure::bus_matrix_diag_size 

    procedure::bus_matrix_diag_values 

    procedure::bus_matrix_forward_size 

    procedure::bus_matrix_reverse_size 

         : 

The procedure keyword distinguishes a function or subroutine bound to the Fortran type from 

a piece of data (which is declared as a data type using one of the intrinsic Fortran data types or a 

Fortran type declaration). 

After the type declarations within the applications_components module, there is a 

contains keyword followed by the subroutine and function implementations for all the 

declared procedures. The original implementations in the component_template.F90 file 

are just stubs for these functions and typically don’t do much. An example is the 

bus_matrix_diag_size function which originally has the implementation 

  logical function bus_matrix_diag_size(bus, isize, jsize) 

    implicit none 

    class(application_bus), intent(in) :: bus 

    integer, intent(out) :: isize, jsize 

    bus_matrix_diag_size = .false. 

    return 

  end function bus_matrix_diag_size 

The initial implementation just returns false if this function is invoked and doesn’t set the 

variables isize or jsize. Note the first item in the argument list. This is declared as being of 

type class(application_bus) with intent in. All functions and subroutines that are 

bound to the application_bus type must have this argument, even if they do not have any 

other arguments. This argument provides a mechanism for accessing data items or functions that 

are related to a particular application_bus instance. 

To see how the bus argument is used in actual practice, an implementation of this function in a 

power flow application is shown below 

  logical function bus_matrix_diag_size(bus, isize, jsize) 

    implicit none 

    class(application_bus), intent(in) :: bus 

    integer, intent(out) :: isize, jsize 

    isize = 1 



158 
 

    jsize = 1 

    bus_matrix_diag_size = .true. 

    if (bus%p_mode.eq.JACOBIAN) then 

      if (.not.bus%bus_is_isolated()) then 

        isize = 2 

        jsize = 2 

        bus_matrix_diag_size = .true. 

      else 

        bus_matrix_diag_size = .false. 

      endif 

    else if (bus%p_mode.eq.YBUS) then 

      if (.not.bus%bus_is_isolated()) then 

        bus_matrix_diag_size = .true. 

        isize = 1 

        jsize = 1 

      else 

        bus_matrix_diag_size = .false. 

      endif 

      return 

    endif 

    return 

  end function bus_matrix_diag_size 

The application_bus implementation for power flow contains the variable p_mode and a 

user-specified function bus_is_isolated (this is declared as a type-bound procedure). To 

access this data and this function inside a type-bound procedure, use the Fortran “%” symbol. 

The bus variable in the argument list is acting in a similar way to the “this” pointer in C++ 

and refers back to the application_bus instance that made the original call to 

bus_matrix_diag_size. Although the bus_is_isolated function implementation has 

the variable bus in its argument list, it doesn’t need to explicitly pass this argument when 

making a call from an application_bus instance. The bus argument is assumed in this 

case. Similarly, a call to the bus_matrix_diag_size function, which has additional 

arguments, would have the form 

      ok = bus%bus_matrix_diag_size(isize,jsize) 

Following this syntax, it is possible to construct a complete set of functions for an arbitrary 

application. Additional application-specific functions can be added to the component types by 

declaring them as procedures within the type and adding their implementations to the 

application_components module. 



159 
 

There are a few procedures in both the bus and branch types that should not be modified. No 

stubs for these appear in the component_template.F90 file. For the application_bus type, these 

procedures are 

    procedure::bus_get_neighbor_branch 

    procedure::bus_get_neighbor_bus 

    procedure::bus_get_xc_buf_size 

    procedure::bus_get_xc_buf 

For the application_branch type, the procedures are 

    procedure::branch_get_bus1 

    procedure::branch_get_bus2 

    procedure::branch_get_xc_buf_size 

    procedure::branch_get_xc_buf 

These procedures are required by other parts of the framework, but should not be modified by 

the user. Some other procedures are defined in the base class and do not appear as procedure 

declarations in application_bus and application_branch types. These procedures include 

    procedure::bus_get_num_neighbors 

    procedure::bus_set_reference_bus 

    procedure::bus_get_reference_bus 

    procedure::bus_get_original_index 

    procedure::bus_compare 

for buses and 

    procedure::branch_get_bus1_original_index 

    procedure::branch_get_bus2_original_index 

    procedure::branch_compare 

for branches. The bus and branch compare functions are used to determine if a bus or branch is 

equal to another bus or branch. An example of how to use this function can be found in the 

function that evaluates transformer contributions on branches for the power flow application. 

The syntax for calling this function is 

double complex function branch_get_transformer(branch, bus) 

    : 

  class(application_branch), intent(in) :: branch 

  class(application_bus), intent(in) :: bus 

  class(application_bus), pointer :: bus1, bus2 

    : 



160 
 

  if (bus%bus_compare(bus1)) then 

    : 

In this fragment, the bus_compare function is being used to check if bus1 is equivalent to bus. 

The branch_compare function is used in a similar way. 

The final issue in implementing the Fortran application bus and branch classes is understanding 

the exchange buffers. These buffers are declared at the top of the 

component_template.F90 file as the bus_xc_data and branch_xc_data data 

types. Although the underlying Fortran interface implementation makes extensive use of the 

iso_c_binding module, we have worked very hard to keep the iso_c_binding data 

types out of the Fortran interface itself. However, the one place where this is not possible is in 

the exchange buffers, so it is important to use these data type declarations for any variables that 

are included in the exchange buffers. The exchange buffers are declared as follows in the top of 

the component_template.F90 file 

  type, bind(c), public :: bus_xc_data 

! 

!  Example data types. Replace with application-specific values 

! 

    integer(C_INT) int_reg 

    integer(C_LONG) int_long 

    real(C_FLOAT) real_s 

    real(C_DOUBLE) real_d 

    complex(C_FLOAT_COMPLEX) complex_s 

    complex(C_DOUBLE_COMPLEX) complex_d 

    logical(C_BOOL) log_reg 

  end type 

The variables int_reg, int_long, real_s, real_d, complex_s, complex_d and 

log_reg are just examples and should be replaced with the variables used in the actual 

application. Not all data types will be used in an application. Any buffer variables used in an 

application should use the iso_c_binding type declarations (C_INT, C_LONG, C_FLOAT, 

C_FLOAT_COMPLEX, C_DOUBLE_COMPLEX, C_BOOL). Variables declared with the 

iso_c_binding types can be cast to regular Fortran variables by relying on the compiler to 

automatically cast an assignment to the right sized variable. For example 

  integer f_var 

  integer(C_INT) c_var 

     : 

  f_var = c_var 



161 
 

If f_var is an 8 byte integer and c_var is a 4 byte integer, the compiler can be relied on to do 

the cast. This also works in the opposite direction, assuming that f_var does not exceed the 

capacity of a 4 byte variable. 

The functions that access neighboring branches or buses also work differently than the 

corresponding C++ functions. Fortran does not support anything that looks like an STL vector so 

neighbors are accessed from buses using a two step process. The first step is to get the total 

number of neighbors attached to the bus using the bus_get_num_neighbors procedure. 

This allows users to set up a loop that can be used to run over either the neighboring branches or 

the neighboring buses that are attached to the calling bus via a single branch. The neighboring 

branches can then be accessed by using the bus_get_neighbor_branch function which returns a 

Fortran pointer to the neighboring branch. The syntax for using this function is 

  integer i, nbranch 

  type(application_branch), pointer :: branch 

  nbranch = bus%bus_get_num_neighbors() 

  do i = 1, nbranch 

    branch => bus%bus_get_neighbor_branch(i) 

       : 

The bus_get_neighbor_bus function works in a similar way and returns a pointer to the 

bus at the other end of branch i. To get pointers to the buses at either end of a branch, use the 

functions branch_get_bus1 and branch_get_bus2 procedures. Because the Fortran 

interface only supports one type of bus or branch per application, these functions return pointers 

of the correct type and there is no need to cast them to something else. 

Most of the remaining differences between the Fortran and C++ interfaces are associated with 

the GridPACK factory module. As with the component classes, the Fortran interface only 

supports one kind of factory. This is the app_factory type and it can be created by copying 

the factory_template.F90 file in the fortran/factory directory and making 

application-specific changes to it. The factory base class contains the functions 

    procedure::set_components 

    procedure::load 

    procedure::set_exchange 

    procedure::set_mode 

    procedure::check_true 

These functions behave the same way as the equivalent C++ functions. In addition, the 

app_factory type contains the two functions 

    procedure::create 



162 
 

    procedure::destroy 

Because Fortran does not support constructors and destructors in the same way as C++, it is 

necessary to create explicit functions that implement whatever behaviors are imbedded in the 

C++ constructors and destructors. This is accomplished in the Fortran interface by adding 

create and destroy functions (or initialize and finalize functions) to most of the 

Fortran implementations of the GridPACK modules. 

Additional methods can be added to the app_factory type to support application-specific 

functionality. An example of how to do this is the set_y_bus procedure for the power flow 

application. This subroutine is declared as a procedure in the app_factory type. The 

implementation is written as 

  subroutine set_y_bus(factory) 

    class(app_factory), intent(in) :: factory 

    class(application_bus), pointer :: bus 

    class(application_branch), pointer :: branch 

    class(network), pointer :: grid 

    integer nbus, nbranch, i 

    grid => factory%p_network_int 

    nbus = grid%num_buses() 

    nbranch = grid%num_branches() 

    do i = 1, nbus 

      bus => bus_cast(grid%get_bus(i)) 

      call bus%bus_set_y_matrix() 

    end do 

    do i = 1, nbranch 

      branch => branch_cast(grid%get_branch(i)) 

      call branch%branch_set_y_matrix() 

    end do 

    return 

  end subroutine set_y_bus 

The functions for accessing the bus and branch objects work differently from the functions that 

get neighboring branches or buses in the component classes. The neighbor bus and branch 

functions return a pointer to the appropriate bus or branch directly to the calling application. The 

get_bus and get_branch functions in the Fortran network class return an opaque object that 

cannot be directly used in a Fortran code. To convert this to  a bus or branch pointer it is 

necessary to call the bus_cast or branch_cast functions which return a pointer that can be 

called in Fortran. 



163 
 

The last remaining point is to provide a list of the existing Fortran modules that need to be used 

in a GridPACK application using the Fortran interface. These modules need to be included in 

any subroutine or function that is using the associated Fortran types. The existing modules are 

  gridpack_network ! type or class network 

  application_factory ! type or class app_factory 

  application_components ! type or class application_bus and 

                         ! application_branch 

  gridpack_configuration ! type or class cursor 

  gridpack_full_matrix_map ! type or class full_matrix_map 

  gridpack_bus_vector_map ! type or class bus_vector_map 

  gridpack_gen_matrix_map ! type or class gen_matrix_map 

  gridpack_gen_vector_map ! type or class gen_vector_map 

  gridpack_math ! access to math initialization and 

                ! finalization routines 

  gridpack_matrix ! type or class matrix 

  gridpack_vector ! type or class vector 

  gridpack_linear_solver ! type or class linear_solver 

  gridpack_nonlinear_solver ! type or class funcbuilder 

                            ! and nonlinear_solver 

  gridpack_communicator ! type or class communicator 

  gridpack_parallel ! access to parallel initialization 

                    ! and finalization routines 

  gridpack_parser ! class or type pti23_parser 

  gridpack_serial_io ! class or type bus_serial_io 

                     ! and branch_serial_io 

The appropriate module should be included in any function or subroutine that uses objects 

defined in the module. Modules can be included using the standard Fortran “use” statement. 


