
GridPACKTM User Manual

B. Palmer

February 3, 2020

Abstract: This document is designed to provide an in-depth description of the GridPACKTM

framework and the software modules contained within it. In combination with the Doxygen-
based documentation on the GridPACK webpage, users and application developers should
have a complete description of the framework components and how to use them. The appli-
cations area in the source code directory, as well as the GridPACK modules and components,
provide additional examples of how GridPACK can be used to create power grid applica-
tions. However, if there are still questions on GridPACK, users should feel free to contact the
GridPACK development team.

1

GridPACKTM License: Copyright (c) 2013, Battelle Memorial Institute All rights reserved.

1. Battelle Memorial Institute (hereinafter Battelle) hereby grants permission to any per-
son or entity lawfully obtaining a copy of this software and associated documentation files
(hereinafter ”the Software”) to redistribute and use the Software in source and binary forms,
with or without modification. Such person or entity may use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and may permit others to do so,
subject to the following conditions: * Redistributions of source code must retain the above
copyright notice, this list of conditions and the following disclaimers. * Redistributions in
binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.
* Other than as used herein, neither the name Battelle Memorial Institute or Battelle may be
used in any form whatsoever without the express written consent of Battelle.

2. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBU-
TORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BATTELLE OR CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEM-
PLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIA-
BILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

3. The Software was produced by Battelle under Contract No. DE-AC05-76RL01830 with
the Department of Energy. For five years from October 10, 2013, the Government is granted
for itself and others acting on its behalf a nonexclusive, paid-up, irrevocable worldwide li-
cense in this data to reproduce, prepare derivative works, and perform publicly and display
publicly, by or on behalf of the Government. There is provision for the possible extension
of the term of this license. Subsequent to that period or any extension granted, the Govern-
ment is granted for itself and others acting on its behalf a nonexclusive, paid-up, irrevocable
worldwide license in this data to reproduce, prepare derivative works, distribute copies to
the public, perform publicly and display publicly, and to permit others to do so. The specific
term of the license can be identified by inquiry made to Battelle or DOE. Neither the United
States nor the United States Department of Energy, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
completeness or usefulness of any data, apparatus, product or process disclosed, or repre-
sents that its use would not infringe privately owned rights.

2

Contents

1 Introduction 6

2 Configuring and Building GridPACK 8

3 Building GridPACK Applications 12

4 GridPACK Framework Components 15

4.1 Preliminaries . 16

4.2 Network Module . 18

4.3 Math Module . 25

4.3.1 Matrices . 26

4.3.2 Vectors . 30

4.3.3 Linear Solvers . 32

4.3.4 Non-linear Solvers . 34

4.4 Network Components . 36

4.5 Data Interface . 44

4.6 Factories . 50

4.7 Mapper Module . 51

4.8 Parser Module . 55

4.9 Serial IO Module . 56

4.10 Configuration Module . 61

5 Developing Applications 64

6 Advanced Functionality 82

6.1 Communicators . 82

6.2 Environment . 87

3

6.3 Task Manager . 88

6.4 Timers . 89

6.5 Exceptions . 92

6.6 Hash Distribution Module . 94

6.7 String Utilities . 95

6.8 Advanced Network Functionality . 98

6.9 Global Store . 100

6.10 Global Vector . 102

6.11 Bus Tables . 103

6.12 Analysis . 105

7 Generalized Matrix-Vector Interface 113

7.1 Generalized Slab Mapper . 118

8 Optimization 120

9 Application Modules 125

9.1 Power Flow . 125

9.2 State Estimation Module . 130

9.3 Dynamic Simulation Module using Full Y-Matrix 132

9.4 Kalman Filter . 137

10 GridPACK Examples 141

10.1 “Hello World” . 141

10.2 Resistor Grid Application . 150

10.3 Contingency Analysis . 166

11 Fortran 2003 Interface 176

4

How to read this document

Depending on how you are planning on using GridPACKTM, there are a variety of different
ways of approaching the documentation. If you are only planning on using existing appli-
cations as is, without modification, then you should focus on the sections for configuring
and building GridPACK and the application module documentation. Users that interested
in developing their own applications may want to scan the section “Developing Applica-
tions” before going to the beginning of the document to learn about individual functionality
in depth. The “GridPACK Examples” section contains additional examples of simple appli-
cations that can be used to get a sense of how to build an application from the ground up.
The “Contingency Analysis” section provides some information on how to build applications
that are based on the existing GridPACK application modules. Users that are interested in
modifying the core functionality in GridPACK can look at the Doxygen documentation on-
line under the “GridPACK API Documentation” link on www.gridpack.org, in addition to
the documentation in this document.

5

Chapter 1

Introduction

The objective of the GridPACKTM toolkit project is to provide a framework to support the
rapid development of power grid applications capable of running on high performance com-
puting architectures (HPC) with high levels of performance and scalability. The toolkit al-
lows power system engineers to focus on developing working applications from their models
without getting bogged down in the details of decomposing the computation across multiple
processors, managing data transfers between processors, working out index transformations
between power grid networks and the matrices generated by different power applications,
and managing input and output. GridPACK is being designed to encapsulate as much of
the book-keeping required to set up HPC applications as possible using high-level program-
ming abstractions that allow developers to concentrate on the physics and mathematics of
their problems. This document summarizes the overall design of the GridPACK framework
and provides a detailed description of its components. The remainder of this document will
describe the functionality incorporated into the GridPACK framework to support multiple
power grid applications. The framework will continue to evolve as more real-world expe-
rience can be incorporated into the design process but many base classes that have already
been identified that are capable of supporting a range of applications. During the initial
stages of GridPACK development, four power grid applications were targeted for implemen-
tation. These included:

1. Powerflow simulations of the electric grid

2. Contingency analysis of the electric grid

3. State estimation based on electric grid measurements

4. Dynamic simulations of the electric grid

From these applications, several cross-cutting functionalities were identified that could be
used to support multiple applications.

1. Network topology and behavior. The network topology is the starting point for any
power grid analysis. The topology defines the initial network model and is the connec-

6

tion point between the physical problem definition in terms of buses and branches and
the solution method, which is usually expressed in terms of matrices and vectors.

2. Network components and their properties (e.g. bus and branch models, measurements,
etc.). Grid components are the objects associated with the buses and branches of the
power grid network. Along with the network topology itself, these define the physical
system being modeled and in some cases the analysis that is to be performed. Bus and
branch components can be differentiated into things like generators, loads, grounds,
lines, transformers, measurements, etc. and depending on the how they are defined
and the level of detail incorporated into them, they define different power grid systems
and analyses. The behavior of buses and branches can depend on the properties of
branches or buses that are directly attached to them, e.g. figuring out the contribution
of a particular bus to the solution procedure may require that properties of the attached
branches are made available to the bus. The necessity for exchanging this data is built
into the framework. Furthermore, these data exchanges must also be accounted for in a
parallel computing context, since the grid component from which data is required may
be located on a different processor.

3. Linear algebra and solvers. Basic algebraic objects, such as distributed matrices and
vectors, are a core part of the solution algorithms required by power grid analyses.
Most solution algorithms are dominated by sparse matrices but a few, such as Kalman
filter analyses, require dense matrices. Vectors are typically dense. There exists a rich
set of libraries for constructing distributed matrices and vectors and these are coupled
to preconditioner and solver libraries. GridPACK can leverage this work heavily by
creating wrappers to these libraries that can be used in solution algorithms. Wrap-
ping these libraries instead of using them directly will have the advantage that creating
algebraic objects can be simplified somewhat for power grid applications but more im-
portantly, it will allow framework developers to investigate new solver and algebraic
libraries seamlessly, without disrupting other parts of the code.

4. Mapping between network and algebraic objects. The physical properties of power grid
systems are defined by networks and the properties of the network components but the
equations describing the networks are algebraic in nature. The mappings between the
physical networks and the algebraic equations depend on the indexing scheme used
to describe the network and the number of parameters in the network components
that appear in the equations. Constructing a map between network parameters and
their corresponding locations in a matrix or vector can be complicated and error prone.
Fortunately, much of this work can be automated and developers can focus more on
developing code to evaluate individual matrix elements without worrying about where
to locate them in the matrix. This can simplify coding considerably.

The elements described above have all been incorporated into GridPACK modules. More
details about these modules and their interactions are provided in the remainder of this
document.

7

Chapter 2

Configuring and Building GridPACK

A note about CMake: The command for invoking CMake in this manual and the documen-
tation in https://gridpack.org is usually of the form

cmake [OPTIONS] ..

This particular form assumes that the build directory is below the directory that contains
the top-level CMakeLists.txt file for the build. For GridPACK, this is located in the src
directory. If your build directory for GridPACK is below src and you invoke CMake from
this directory, the “..” at the end of the cmake command is pointing to src. You could also
use the absolute path to the src directory instead of “..” and this would work no matter
where you locate the build directory.

Building GridPACK requires several external libraries that must be built prior trying to con-
figure and build GridPACK itself. On some systems, these libraries may already be available
but in many cases, users will need to build them by hand. An exception is MPI, which is usu-
ally available on parallel platforms, although users interested in running parallel jobs on a
multi-core workstation may still need to build it themselves. In any case, the best way to guar-
antee that all libraries are compatible with each other is to build them all using a consistent
environment and set of compilers. There is extensive documentation on how to build Grid-
PACK and the libraries on which it depends on the website located at https://gridpack.org.
We refer to the information on the website for most of the details on how to build GridPACK
and will only discuss some general properties of the configure procedure in this document.

Example scripts for building the libraries used by GridPACK on different systems can be
found under $GRIDPACK/src/scripts. In most cases these need to be modified slightly
before they will work on your system, but the changes are usually small and self-evident.
The scripts contain some additional documentation at the top to help you with these modifi-
cations. Find a script for a platform that is similar to your system and use this as the starting
point for your build.

GridPACK uses the CMake build system to create a set of make files that can then be used to
compile the entire GridPACK framework. Most of the effort in building GridPACK is focused

8

on getting the configure process to work, once configure has been successfully completed,
compilation is usually straightforward. Builds of GridPACK should be done in their own
directory and this also makes it possible to have multiple builds that use different configu-
ration parameters associated with the same source tree. Typically, the build directories are
under $GRIDPACK/src directory but they can be put anywhere the user chooses. The user
then needs to run CMake from the build directory to configure GridPACK and then make and
make install to compile and install the GridPACK libraries. After running make, all ap-
plications in the GridPACK source tree are also available for use. The application executables
will be located in the build directory and not in the source tree.

GridPACK currently makes use of five different libraries. MPI and Global Arrays are used for
communication, Boost provides several C++ extensions used throughout GridPACK, Parmetis
is used to partition networks over multiple processors and PETSc provides parallel solvers
and algebraic functionality. Except for MPI, which is usually available through compiler
wrappers such as mpicc and mpicxx, the locations of the remaining libraries need to be
specified in the CMake configure command.

Because the cmake command takes a large number of arguments, it is usually a good idea
to put the entire command in a script. The script can then be edited as needed. Make sure
that the script is executable by running the chmod +x command on it. A typical CMake
configure script is

rm -rf CMake*

cmake -Wdev \
-D BOOST_ROOT:STRING=’\$HOME/software_new/boost_1_55_0’ \
-D PETSC_DIR:STRING=’\$HOME/software_new/petsc-3.6.0’ \
-D PETSC_ARCH:STRING=’linux-openmpi-gnu-cxx’ \
-D PARMETIS_DIR:STRING= \

’\$HOME/software_new/petsc-3.6.0/linux-openmpi-gnu-cxx/lib’ \
-D GA_DIR:STRING=’\$HOME/software_new/ga-5-4-ib’ \
-D USE_PROGRESS_RANKS:BOOL=FALSE \
-D GA_EXTRA_LIBS=’-lrt -libverbs’ \
-D MPI_CXX_COMPILER:STRING=’mpicxx’ \
-D MPI_C_COMPILER:STRING=’mpicc’ \
-D MPIEXEC:STRING=’mpiexec’ \
-D CMAKE_INSTALL_PREFIX:PATH=’\$GRIDPACK/src/build/install’ \
-D CMAKE_BUILD_TYPE:STRING=’RELWITHDEBINFO’ \
-D MPIEXEC_MAX_NUMPROCS:STRING="2" \
-D CMAKE_VERBOSE_MAKEFILE:STRING=TRUE \
..

The first line removes any configuration files that may be left over from a previous configura-
tion attempt. Removing these files is generally a good idea since parameters from a previous
unsuccessful attempt may bleed over into the current configuration and either spoil the con-
figuration itself or lead to problems when you try to compile the code.

9

The Boost, PETSc, Parmetis and Global Array library locations are specified by the BOOST ROOT,
PETSC DIR, PARMETIS DIR and GA DIR variables. The PETSC ARCH variable specifies the
particular build within PETSc that you want GridPACK to use. It is usually possible when
configuring and building PETSc to have it download and build Parmetis as well. This was
done in the example above and thus the Parmetis libraries are located within the PETSc
source tree in the directory corresponding to the architecture specified in PETSC ARCH.

The Global Arrays library can be built using a number of different runtimes. The default
runtime uses MPI two-sided communication. While it is very easy to use, this runtime does
not scale well beyond a dozen or so processors. Users interested on running on large numbers
of cores should look at configuring Global Arrays with other runtimes. A high performing
GA runtime that is available on most platforms is called progress ranks. This runtime has
a peculiarity in that it reserves one MPI process per SMP node to manage communication.
Thus, if you request a total of 20 MPI processes on 4 nodes with 5 processes running on each
node only 4 MPI process per node will actually be available to the application for a total of 16.
In order to notify GridPACK that you are using this runtime, you need to set the parameter
USE PROGRESS RANKS to true. In the example above, we are not using progress ranks so we
set USE PROGRESS RANKS to false.

The GA EXTRA LIBS parameter can be used to include extra libraries in the link step that are
not picked up as part of the configuration process. In this example, GA is configured to run
on an Infiniband network so it is necessary to explicitly include libibverbs and librt. For
most of the MPI-based runtimes, this variable is not needed. The MPI wrappers for the C and
C++ compilers can be specified by setting MPI C COMPILER and MPI CXX COMPILER and
the MPI launch command can be specified using MPIEXEC. The CMAKE INSTALL PREFIX
specifies the location of the installed build of GridPACK. This location should be used when
linking external applications to GridPACK. The CMAKE BUILD TYPE can be used to control
the level of debugging symbols in the library. MPIEXEC NUM PROCS should be set to a small
number and controls the number of processors that will be used if running the parallel tests
in the GridPACK test suite. Many of the application tests are small (9 or 14 buses) and will fail
if you try and run on a large number of cores. Finally, CMAKE VERBOSE MAKEFILE controls
the level of information generated during the compilation. It is mainly of interest for people
doing development in GridPACK and most other users can safely set it to false.

A new feature in the build is to use shared libraries instead of static builds. This may be
of interest to users that are interested in wrapping GridPACK applications with python. A
shared library version of GridPACK can be created by configuring GridPACK against versions
of Boost, GA, and PETSc that are built as shared libraries. It appears that just configuring
against shared libraries is enough to trigger a share library build in CMake, but users can add
the line

-D BUILD_SHARED_LIBS:BOOL=TRUE \

to their configuration invocation to make sure.

The final argument of the cmake command is the location of the top level CMakeLists.txt
file in the source tree. For GridPACK, this file is located in the $GRIDPACK/src directory.

10

The above example assumes that the build directory is located directly under $GRIDPACK/src
so the .. at the end of the configure script is pointing to the directory containing the
CMakeLists.txt file.

Once the GridPACK framework has been built, applications and framework tests can be run
using standard MPI scripts for running jobs. A typical invocation to run a code code.x on
some number of processors is

mpirun -n 2 code.x

In this case the code will run on 2 processors. Different platforms may use different scripts
to run the parallel job. Consult your local system documentation for details. Applications
may also have additional arguments that are processed inside the application itself. Most
GridPACK applications will take an argument representing the input file for the application.

11

Chapter 3

Building GridPACK Applications

GridPACK comes with several applications that are included in the main distribution. These
currently include power flow, contingency analysis, dynamic simulation, state estimation and
Kalman filter applications as well as some non-power grid examples that illustrate features
of the framework. These applications are automatically built whenever the full GridPACK
distribution is built.

For applications developed outside the GridPACK distribution, the build process is fairly
simple, provided you are using CMake (you will need to have CMake installed on your sys-
tem to build GridPACK so using CMake for your application build should be a straightfor-
ward extension). For a CMake build, you need to create a CMakeLists.txt file in the same
directory that includes your application files. A template for the CMakeLists.txt file is

1 cmake_minimum_required(VERSION 2.6.4)
2
3 if (NOT GRIDPACK_DIR)
4 set(GRIDPACK_DIR /HOME/gridpack-install
5 CACHE PATH "GridPACK installation directory")
6 endif()
7
8 include("\${GRIDPACK_DIR}/lib/GridPACK.cmake")
9
10 project(MyProject)
11
12 enable_language(CXX)
13
14 gridpack_setup()
15
16 add_definitions(\${GRIDPACK_DEFINITIONS})
17 include_directories(BEFORE \${CMAKE_CURRENT_SOURCE_DIR})
18 include_directories(BEFORE \${GRIDPACK_INCLUDE_DIRS})
19

12

20 add_executable(myapp.x
21 myapp_main.cpp
22 mayapp_driver.cpp
23 myapp_file1.cpp
24 myapp_file2.cpp
25)
26 target_link_libraries(myapp.x \${GRIDPACK_LIBS})
27
28 add_custom_target(myapp.input
29
30 COMMAND \${CMAKE_COMMAND} -E copy
31 \${CMAKE_CURRENT_SOURCE_DIR}/input.xml
32 \${CMAKE_CURRENT_BINARY_DIR}
33
34 COMMAND \${CMAKE_COMMAND} -E copy
35 \${CMAKE_CURRENT_SOURCE_DIR}/myapp_test.raw
36 \${CMAKE_CURRENT_BINARY_DIR}
37
38 DEPENDS
39 \${CMAKE_CURRENT_SOURCE_DIR}/input.xml
40 \${CMAKE_CURRENT_SOURCE_DIR}/myapp_test.raw
41)
42 add_dependencies(myapp.x myapp.input)

Lines 1-6 check to see if the CMake installation is recent enough and also make sure that
the GRIDPACK DIR variable has been defined in the configuration step. If it hasn’t, then the
CMake will try and use a default value and look for a build in $HOME/gridpack-install.
However, this is unlikely to be successful, so it is better to define GRIDPACK DIR when con-
figuring your application. Line 8 picks up a file that is used by the application build to link
to libraries and header files in the GridPACK build and line 10 can be used to assign a name
to your application. Lines 12-18 can be included as is, if all application files are in the same
directory as the CMakeLists.txt file. If other directories contain source and header files, then
they can be included using the directives in lines 17 and 18.

Lines 20-25 define the name of the executable and all the source code files that are used in the
application. The add executable command on line 26 adds the executable myapp.x to the
build. The arguments to this command consist of the name of the executable followed by the
executable source files. There can be an arbitrary number of source files associated with any
one executable. Note that the source files just consist of the user application source files, the
framework files are handled automatically. If some of the files are located in subdirectories,
then the path relative to the directory where the CMakeLists.txt file is located should be
included.

The remaining lines 28-42 are optional and can be used to automatically copy files from the
application source file directory to the build directory. These could include example input
files or external configuration files that are called by the code to set internal parameters. The

13

add custom target command on line 28 defines a list of files and what should be done
with them. In this example, the two files input.xml and myapp test.raw are the files
to be copied. The COMMAND line specifies the action (copy) and the next two lines specify
the location of the file to be copied and its destination. The DEPENDS keyword (line 38)
indicates that any time the input.xml or myapp test.raw files are modified, they should
be recopied to the build directory if make is invoked and the add dependencies command
(line 42) binds the custom target to the build of the executable.

A template file for CMakeLists.txt can be found in the src directory under CMakeLists.template.txt.
Users should copy this file to their application directory, modify the name to CMakeLists.txt
and add their own source files and test input.

14

Chapter 4

GridPACK Framework Components

This section will describe the GridPACK components and the functionality they support. The
four major GridPACK components are networks, bus and branch components, the mappers
and the math module. The math module is relatively self-contained and can be used as a
conventional library, but the other three are tightly coupled and need to be used together to
do anything useful. A schematic that illustrates the relationship between these components
is shown in Figure 4.1.

A full description of a power grid network requires specification of both the network topol-
ogy and the physical properties of the bus and branch components. The combination of the
models and the network generate algebraic equations that can be solved to get desired sys-
tem properties. GridPACK supplies numerous modules to simplify the process of specifying
the model and solving it. These include power grid components that describe the physics
of the different network models or analyses, grid component factories that initialize the grid
components, mappers that convert the current state of the grid components into matrices
and vectors, solvers that supply the preconditioner and solver functionality necessary to im-
plement solution algorithms, input and output modules that allow developers to import and
export data, and other utility modules that support standard code develop operations like
timing, event logging, and error handling.

Many of these modules are constructed using libraries developed elsewhere so as to min-
imize framework development time. However, by wrapping them in interfaces geared to-
wards power grid applications these libraries can be made easier to use by power grid engi-
neers. The interfaces also make it possible in the future to exchange libraries for new or im-
proved implementations of specific functionality without requiring application developers to
rewrite their codes. This can significantly reduce the cost of introducing new technology into
the framework. The software layers in the GridPACK framework are shown schematically in
Figure 4.2.

Core framework components are described below. Before discussing the components them-
selves, some of the coding conventions and libraries used in GridPACK will be described.

15

Figure 4.1: Relationship between major GridPACK components.

4.1 Preliminaries

The GridPACK software uses a few coding conventions to help improve memory manage-
ment and to minimize run-time errors. The first of these is to employ namespaces for all
GridPACK modules. The entire GridPACK framework uses the gridpack namespace, indi-
vidual modules within GridPACK are further delimited by their own namespaces. For ex-
ample, the BaseNetwork class discussed in the next section resides in the gridpack::network
namespace and other modules have similar delineations. The example applications included
in the source code also have their own namespaces, but this is not a requirement for devel-
oping GridPACK-based applications.

To help with memory management, many GridPACK functions return boost shared pointers
instead of conventional C++ pointers. These can be converted to a conventional pointer
using the get() command. We also recommend that the type of pointers be converted using
a dynamic cast instead of conventional C-style cast. Application files should include the
gridpack.hpp header file. This can be done by adding the line

#include "gridpack/include/gridpack.hpp"

at the top of the application .hpp and/or .cpp files. This file contains definitions of all the
GridPACK modules and their associated functions.

Matrices and vectors in GridPACK were originally complex but now either complex or real

16

Figure 4.2: A schematic diagram of the GridPACK framework software data stack. Green rep-
resents components supplied by the framework and blue represents code that is developed
by the user.

17

matrices can be created using the library. Inside the GridPACK implementation, the under-
lying distributed matrices are either complex or real, but the framework adds a layer that
supports both types of objects, even if the underlying math library does not. However, com-
putations on complex matrices will perform better if the underlying math library is config-
ured to use complex matrices directly. This should be kept in mind when choosing the math
library to build GridPACK on. The underlying PETSc library can be configured to support
either real or complex matrices. Complex numbers are represented in GridPACK as having
type ComplexType. The real and imaginary parts of a complex number x can be obtained
using the functions real(x) and imag(x).

4.2 Network Module

The network module is designed to represent the power grid and has four major functions:

1. The network is a container for the grid topology. The connectivity of the network is
maintained by the network object and can be made available through requests to the
network. The network also maintains the “ghost” status of buses and branches and
determines whether a bus or branch is owned by a particular processor or represents a
ghost image of a bus or branch owned by a neighboring processor.

2. The network topology can be decorated with bus and branch objects that describe the
properties of the particular physical system under investigation. Bus and branch ob-
jects are written by the application developer and incorporate the grid model and the
analyses that need to be performed on it. Different applications will use different bus
and branch implementations.

3. The network module is responsible for supplying update operations that can be used to
fill in the value of ghost cell fields with current data from other processors. The updates
of ghost buses and ghost branches have been split into separate operations to give users
flexibility in optimizing performance by minimizing the amount of data that needs to
be communicated in the code. Many applications do not require exchanges of branch
data.

4. The network contains the partitioner. The partitioner is embedded in the network mod-
ule but it is a substantial computational technology in its own right. Partitioning is a
key part of parallel application development. It represents the act of dividing up the
problem so that each processor is left with approximately equal amounts of work. At
the same time, the partition is chosen so that communication between processors (a
major source of computational inefficiency in HPC programs) is minimized.

A network is illustrated schematically in Figure 4.3. Each bus and branch has an associated
bus or branch object. The buses and branches are derived from base classes that specify cer-
tain functions that must be implemented by the application developer so that the network

18

Figure 4.3: Schematic representation of a GridPACK network. The squares are branch objects
and the circles are bus objects. Framework-specified interfaces are green and user supplied
functionality is blue.

19

can interact with other GridPACK modules. In addition, the application can have function-
ality outside the base class that is unique to the particular application.

A major use of the partitioner is to rearrange the network in a form that is useful for com-
putation immediately after it is read in from an external file. Typically, the information in
the external file is not organized in a way that is necessarily optimal for computation, so the
partitioner must redistribute data such that each processor contains at most a few large con-
nected subsets of the network. The partitioner is also responsible for adding the ghost buses
and branches to the system.

Ghost buses and branches in a parallel program represent images of buses and branches that
are owned by other processes. In order to carry out operations on buses and branches it
is frequently necessary to gain access to data associated with attached buses and branches.
The most efficient way to do this is to create copies of the buses and branches from other
processors that are connected to locally owned objects. All local network components then
have a complete set of attached neighbors. The ghost objects are updated collectively with
current information from their home processors at points in the computation. Updating all
ghosts at once is almost always more efficient than accessing data from one remote bus or
branch at a time.

The use of the partitioner to distribute the network between different processors and cre-
ate ghost nodes and branches is illustrated in Figure 4.4. Figure 4.4(a) shows a simple net-
work and Figure 4.4(b) and Figure 4.4(c) show the result of distributing the network between
two processors. Figure 4.4(a) shows a connected network that has been partitioned between
two processors such that each processor owns roughly equally sized connected pieces. Fig-
ure 4.4(b) and Figure 4.4(c) show the pieces of the network on each processor after the ghost
buses and branches have been added. Note that the ghost buses and branches represent con-
nections that are split by the partition in Figure 4.4(a).

Networks can be created using the templated base class BaseNetwork<class Bus, class
Branch>, where Bus and Branch are application-specific classes describing the proper-
ties of buses and branches in the network. The BaseNetwork class is defined within the
gridpack::network namespace. In addition to the Bus and Branch classes, each bus and
branch has an associated DataCollection object, which is described in more detail in the
data interface section. The DataCollection object is a collection of key-value pairs that
acts as an intermediary between data that is read in from external configuration files and the
bus and branch classes that define the network.

The BaseNetwork class contains a large number of methods, but only a relatively small
number will be of interest to most application developers. Users that are interested in build-
ing networks from scratch instead of using one of the GridPACK parser modules can read
the section on advanced network functionality that describes methods used primarily within
other GridPACK modules to implement higher level capabilities. This section will focus on
calls that are likely to be used by application developers.

The constructor for the network class is the function

BaseNetwork(const parallel::Communicator &comm)

20

Figure 4.4: A (a) simple network, (b) partition of network on processor 0, and (c) partition
of network on processor 1. Open circles indicate ghost buses and dotted lines indicate ghost
branches.

21

The Communicator object is used to define the set of processors over which the network
is distributed. Communicators are discussed in more detail in section 6.1. The network
constructor creates an empty shell that does not contain any information about an actual
network. The remainder of the network must be built up by adding buses and branches to
it. Typically, buses and branches are added by passing the network to a parser (see import
module) which will create an initial version of the network. The constructor is paired with a
corresponding destructor

˜BaseNetwork()

that is called when the network object passes out of scope or is explicitly deleted by the user.
Two functions are available that return the number of buses or branches that are available on
a process. This number includes both buses and branches that are held locally as well as any
ghosts that may be located on the process.

int numBuses()

int numBranches()

There are also functions that will return the total number of buses or branches in the network.
These numbers ignore ghost buses and ghost branches.

int totalBuses()

int totalBranches()

Buses and branches in the network can be identified using a local index that runs from 0
to the number of buses or branches on the process minus 1 (0-based indexing). For some
calculations, it is necessary to identify one bus in the network as a reference bus. This bus
is usually set when the network is created using an import parser. It can subsequently be
identified using the function

int getReferenceBus()

If the reference bus is located on this processor (either as a local bus or a ghost) then this
function returns the local index of the bus, otherwise it returns -1.

Ghost buses and branches are distinguished from locally owned buses and branches based
on whether or not they are “active”. The two functions

bool getActiveBus(int idx)

bool getActiveBranch(int idx)

22

provide the active status of a bus or branch on a process. The index idx is a local index for
the bus or branch. Buses and branches are characterized by a number of different indices.
One is the local index, already discussed above, but there are several others. Most of these
are used internally by other parts of the framework but one index is of interest to application
developers. This is the “original” bus index. When the network is described in the input file,
the buses are labeled with a (usually) positive integer. There or no requirements that these
integers be consecutive, only that each bus has its own unique index. The value of this index
can be recovered using the function

int getOriginalBusIndex(int idx)

The variable idx is the local index of the bus. Branches are usually described in terms of the
original bus indices for the two buses at each end of the branch, so there is no corresponding
function for branches. Instead, the procedure is to get the local indices of the two buses at
each end of the branch and then get the corresponding original indices of the buses. This
information is usually used for output.

It is frequently necessary to gain access to the objects associated with each bus or branch.
The following four methods can be used to access these objects

boost::shared_ptr<Bus> getBus(int idx)

boost::shared_ptr<Branch> getBranch(int idx)

boost::shared_ptr<DataCollection> getBusData(int idx)

boost::shared_ptr<DataCollection> getBranchData(int idx)

The first two methods can be used to get Boost shared pointers to individual bus or branch ob-
jects indexed by local indices idx. The second two functions return pointers to the DataCollection
objects associated with each bus or branch. These DataCollection objects can be used to
initialize the bus and branch objects at the start of a calculation but they are also useful when
converting a network of one type to a network of another type. This often happens when dif-
ferent computations are chained together. The following functions can be useful for handling
input that is directed at certain network components

std::vector<int> getLocalBusIndices(int idx)

std::vector<int> getLocalBranchIndices(int idx1, int idx2)

These functions return a list of local indices that correspond to either the original bus index
idx for a bus, or the pair of indices idx1, idx2 for a branch. The reason that a list is re-
turned instead of a single index is that in the case of ghost buses and branches, more than

23

one copy of a network component may exist on a process. If no copies of a network com-
ponent exist on a process then the returned vector has zero length. These functions can be
used for applications such as contingency analysis, where modifications are made to a single
network component and the modifications are specified in terms of the original bus indices.
These functions can be used to find the local index of the component, if it exists. The network
partitioner can be accessed via the function

void partition()

The partition function distributes the buses and branches across processors such that the
connectivity to branches and buses on other processors is minimized. It is also responsible
for adding ghost buses and branches to the network. This function should be called after the
network is read in but before any other operations, such as setting up exchange buffers or
creating neighbor lists, have been performed. Finally, two sets of functions are required in
order to set up and execute data exchanges between buses and branches in a distributed net-
work. These exchanges are used to move data from active components to ghost components
residing on other processors. Before these functions can be called, the buffers in individual
network components must be allocated. See the documentation on network components in
section 4.4 and the network factory in section 4.6 for more information on how to do this.
Once the buffers are in place, bus and branch exchanges can be set up and executed with just
a few calls. The functions

void initBusUpdate()

void initBranchUpdate()

are used to initialize the data structures inside the network object that manage data ex-
changes. Exchanges between buses and branches are handled separately, since not all ap-
plications will require exchanges between both sets of objects. The initialization routines are
relatively complex and allocate several large internal data structures, so they should not be
called if there is no need to exchange data as part of the algorithm.

After the updates have been initialized, it is possible to execute a data exchange at any point
in the code by calling the functions

void updateBuses()

void updateBranches()

These functions will cause data on ghost buses and branches to be updated with current
values from active buses and branches located on other processors. One additional network
function that can be useful in certain circumstances is the capability for recovering the com-
municator on which the network is defined

24

const Communicator& communicator() const

This function can be used in implementing algorithms based on multilevel parallelism. Re-
covering the communicator is also needed for converting applications to modules that can be
used to create higher level workflows that combine multiple different types of applications.
This is discussed in more detail below.

The BaseNetwork methods described in this section are only a subset of the total func-
tionality available but they represent most of the methods that a typical developer would
use. The remaining functions are primarily used to implement other parts of the GridPACK
framework but are generally not required by people writing applications. More information
on how the functions described above are used in practice can be found in the section on
GridPACK factories.

4.3 Math Module

The math module provides support in GridPACK for distributed matrices and vectors, linear
solvers, non-linear solvers, and preconditioners. Once created, matrices can be treated as
opaque objects and manipulated using a high level syntax that is comparable to writing Mat-
lab code. The distributed matrix and vector data structures themselves are based on external
solver libraries and represent relatively lightweight wrappers on multipurpose HPC codes.
The current math module is built on the PETSc library but other libraries, such as Hypre and
Trilinos could potentially be used instead.

The main functionality associated with the math module is the ability to instantiate new
matrices and vectors, add individual matrix and vector elements (and their values) to the
matrix/vector objects, invoke the assemble operation on the object, perform basic algebraic
operations, such as matrix-vector multiply, and solve systems of algebraic equations. The
assemble operation is designed to give the library a chance to set up internal data structures
and repartition the matrix elements, etc. in a way that will optimize subsequent calculations.
Inclusion of this operation follows the syntax of most solver libraries when they construct a
matrix or vector.

In addition to basic matrix operations, the math module contains linear and non-linear
solvers and preconditioners. The module provides a simple interface on top of the PETSc
libraries that will allow users access to this functionality without having to be familiar with
the libraries themselves. This should make it possible to construct solver routines that are
comparable in complexity to Matlab scripts. The use of a wrapper instead of having users
directly access the libraries will also make it simpler to switch the underlying library in an
application. All that will be required is that developers link to an implementation of the
math module interface that is built on a different library. There will not be a need to rewrite
any application code. This has the advantage that if a different library is used for the math
module in one application, it instantly becomes available for other applications.

The functionality in the math component is distributed between the classes Matrix , RealMatrix,
Vector, RealVector, LinearSolver,

25

RealLinearSolver, NonLinearSolver, and RealNonlinearSolver

Each of these classes is in the gridpack::math namespace and is described below. Like the
BaseNetwork class, there are a lot of functions in Matrix and Vector that do not need to
be used by users. Most of the functions related to matrix/vector instantiation and creation
are used inside the mapper classes described in section 4.7, which eliminates the need for
users to deal with them directly. However, users may be interested in creating functions not
covered by existing library methods and in this case access to these functions is useful.

An additional note on the math module class names is in order. Originally, GridPACK only
supported complex objects and used the names Vector, Matrix, etc. More recently, the
capability for supporting real objects was added and hence the new names RealVector,
etc. The original names continued to be used for complex objects to maintain backwards
compatibility. Complex objects can also be accessed using the names ComplexVector,
ComplexMatrix, etc., which are mapped to the original complex objects.

4.3.1 Matrices

The Matrix and RealMatrix classes are designed to create distributed matrices. Matrix
is used for complex matrices and RealMatrix is used for real matrices. The matrix classes
support two types of matrix, Dense and Sparse. In most cases users will want to use the
sparse matrix but some applications require dense matrices. The Matrix and RealMatrix
classes are nearly identical in functionality, so in the following we will only outline operations
on the Matrix class. In most cases, the RealMatrix class contains the same operations. The
only point to note is that for any operations that involve multiple matrices or a matrix and a
vector, all matrix and vector objects must be either all complex or all real. In the future, we
plan on adding some operations that will allow users to convert between types.

The matrix constructor is

Matrix(const parallel::Communicator &comm,
const int &local_rows,
const int &cols,
const StorageType &storage_type=Sparse)

The communicator object comm specifies the set of processors that the matrix is defined on,
the local rows parameter corresponds to the number of rows contributed to the matrix
by the processor, the cols parameter indicates what the second dimension of the matrix is
and the storage type parameter determines whether the matrix is sparse or dense. If the
total dimension of the matrix is M×N, then the sum of the local rows parameters over all
processors must equal M and the cols parameter is equal to N.

The matrix destructor is

˜Matrix()

26

Once a matrix has been created some inquiry functions can be used to probe the matrix size
and distribution. The following functions return information about the matrix.

int rows() const

int localRows() const

void localRowRange(int &lo, int &hi) const

int cols()

The function rows will return the total number of rows in the matrix, localRows returns
the number of rows associated with the calling processor, localRowRange returns the lo
and hi index of the rows associated with the calling processor and cols returns the num-
ber of columns in the matrix. Note that matrices are partitioned into row blocks on each
processor.

Additional functions can be used to add matrix elements to the matrix, either one at a time or
in blocks. The following two calls can be used to reset existing elements or insert new ones.

void setElement(const int &i, const int &j,
const ComplexType &x)

void setElements(const int &n, const int *i, const int *j,
const ComplexType *x)

For real matrices, all variables of type ComplexType should be switched to type double.
The first function will set the matrix element at the index location (i,j) to the value x. If
the matrix element already exists, this function overwrites the value, if the element is not
already part of the matrix, it gets added with the value x. Note that both i and j are zero-
based indices. For the current PETSc based implementation of the math module, it is not
required that the index i lie between the values of lo and hi obtained with localRowRange
function, but for performance reasons it is desirable. Other implementations may require
that i lie in this range. The second function can be used to add a collection of elements all at
once. The variable n is the number of elements to be added, the arrays i and j contain the
row and column indices of the matrix elements and the array x contains their values. Again,
it is preferable that all values in i lie within the range [lo,hi].

Two functions that are similar to the set element functions above are the functions

void addElement(const int &i, const int &j,
const ComplexType &x)

void addElements(const int &n, const int *i, const int *j,
const ComplexType *x)

27

These differ from the set element functions only in that instead of overwriting the new values
into the matrix, these functions will add the new values to whatever is already there. If no
value is present in the matrix at that location the function inserts it.

In addition to setting or adding new elements, it is possible to retrieve matrix values using
the functions

void getElement(const int &i, const int &j,
ComplexType &x) const

void getElements(const int &n, const int *i, const int *j,
ComplexType *x) const

These functions can only access elements that are local to the processor. This means that the
index i must lie in the range [lo,hi] returned by the function localRowRange.

Finally, before a matrix can be used in computations, it must be assembled and internal data
structures must be set up. This can be accomplished by calling the function

void ready()

After this function has been invoked, the matrix is read for use and can be used in com-
putations. In general, the procedure for building a matrix is 1) create the matrix object 2)
determine local parameters such as lo and hi 3) set or add matrix elements and 4) assemble
the matrix using the ready function. For most applications, users can avoid these operations
by building matrices and vectors using the mapper functionality described in section 4.7 and
chapter 7.

Some additional functions have been included in the matrix class that can be useful for cre-
ating matrices or writing out their values (e.g. for debugging purposes). It is often useful to
create a copy of a matrix. This can be done using the clone method

Matrix* clone() const

The new matrix is an exact replica of the matrix that invokes this function.

Two functions that can be used to write the contents of a matrix, either to standard output or
to a file are

void print (const char *filename=NULL) const

void save(const char *filename) const

The first function will write the contents of the matrix to standard output if no filename
is specified, otherwise it writes to the specified file, the second function will write a file in

28

MatLAB format. These functions can be used for debugging or to create matrices that can be
fed into other programs.

Once a matrix has been created, a variety of methods can be applied to it. Most of these are
applied after the ready call has been made by the matrix, but some operations can be used
to actually build a matrix. These functions are listed below.

void equate(const Matrix &A)

This function sets the calling matrix equal to matrix A.

void scale(const ComplexType &x)

Multiply all matrix elements by the value x (use a value of type double for a real matrix).

void multiplyDiagonal(const Vector &x)

Multiply all elements on the diagonal of the calling matrix by the corresponding element of
the vector x. The Vector class is described in section 4.3.2.

void addDiagonal(const Vector &x)

Add elements of the vector x to the diagonal elements of the calling matrix.

void add(const Matrix &A)

Add the matrix A to the calling matrix. The two matrices must have the same number of rows
and columns, but otherwise there are no restrictions on the data layout or the number and
location of the non-zero entries.

void identity()

Create an identity matrix. This function assumes that the calling matrix has been created but
no matrix elements have been assigned to it.

void zero()

Set all non-zero entries to zero.

void conjugate(void)

Set all entries to their complex conjugate value. This function only applies to complex ma-
trices. The following functions create a new matrix or vector.

29

Matrix *multiply(const Matrix &A, const Matrix& B)

Multiply matrix A times matrix B to create a new matrix.

Vector *multiply(const Matrix &A, const Vector &x)

Multiply matrix A times vector x to get a new vector.

Matrix *transpose(const Matrix &A)

Take the transpose of matrix A.

4.3.2 Vectors

The vector class operates in much the same way as the matrix class. As above, most func-
tions apply to both the Vector and RealVector class so only the Vector operations are
described here. The vector constructor is

Vector(const parallel::Communicator& comm, const int& local_length)

The parameter local length is the number of contiguous elements in the vector that are
held on the calling processor. The sum of local length over all processors must equal the
total length of the vector. The functions

int size(void) const

int localSize(void) const

void localIndexRange(int &lo, int &hi) const

can by used to get the global size of the vector or the size of the vector segment held locally
on the calling processor. The localIndexRange function can be used to find the indices of
the vector elements that are held locally.

Vector elements can be set and accessed using the functions

void setElement(const int &i, const ComplexType &x)

void setElementRange(const int& lo, const int &hi, ComplexType *x)

void setElements(const int &n, const int *i, const ComplexType *x)

30

void addElement(const int &i, const ComplexType &x)

void addElements(const int& n, const int *i, const ComplexType *x)

void getElement(const int& i, ComplexType& x) const

void getElements(const int& n, const int *i, ComplexType *x) const

void getElementRange(const int& lo, const int& hi,
ComplexType *x) const

void ready(void)

These functions all operate in a similar way to the corresponding matrix operations. The
setElementRange function, etc. are similar to the setElements function except that
instead of specifying individual element indices in a separate vector, the low and high indices
of the segment to which the values are assigned is specified (this assumes that the values in
the array x represent a contiguous segment of the vector). Again, for real vectors, all values
of type ComplexType should be replaced by values of type double. The utility functions

Vector *clone(void) const

void print(const char* filename = NULL) const

void save(const char *filename) const

also have similar behaviors to their matrix counterparts.

Additional operations that can be performed on the entire vector include

void zero(void)

void equate(const Vector &x)

void fill(const ComplexType& v)

ComplexType norm1(void) const

ComplexType norm2(void) const

ComplexType normInfinity(void) const

void scale(const ComplexType& x)

31

void add(const ComplexType& x)

void add(const Vector& x, const ComplexType& scale = 1.0)

void elementMultiply(const Vector& x)

void elementDivide(const Vector& x)

The zero function sets all vector elements to zero, the equate function copies all values
of the vector x to the corresponding elements of the calling vector, fill sets all elements
to the value v, norm1 returns the L1 norm of the vector, norm2 returns the L2 norm and
normInfinity returns the L∞ norm. The scale function can be used to multiply all vector
elements by the value x, the first add function can be used to add the constant x to all vector
elements and the second add function can be used to add the vector x to the calling vector
after first multiplying it by the value scale. The final two functions multiply or divide each
element of the calling vector by the value in the vector x.

The following methods modify the values of the vector elements using some function of the
element value.

void abs(void)

void real(void)

void imaginary(void)

void conjugate(void)

void exp(void)

void reciprocal(void)

The function abs replaces each element with its complex norm (absolute value), real and
imaginary replace the elements with their real or imaginary values, conjugate replaces
the vector elements with their conjugate values, exp replaces each vector element with the
exponential of its original value and reciprocal replaces each element by its reciprocal.
The real, imaginary and conjugate functions only apply to complex vectors.

4.3.3 Linear Solvers

The math module also contains solvers. The LinearSolver class contains a constructor

LinearSolver(const Matrix &A)

32

that creates an instance of the solver. The matrix A defines the set of linear equations Ax=b
that must be solved. If matrix A is a RealMatrix then the corresponding class and its con-
structor is

RealLinearSolver(const RealMatrix &A)

The properties of the solver can be modified by calling the function

void configure(utility::Configuration::Cursor *props)

The Configuration module is described in more detail section 4.10. This function can be
used to pass information from the input file to the solver to alter its properties. For the PETSc
library, the solver algorithm can be controlled using PETSc’s runtime options database. Dif-
ferent options can be passed to PETSc by including a block in the input deck (there is more
documentation on input decks in the section on the Configuration module). An example
of this type of input is

<LinearSolver>
<PETScOptions>

-ksp_view
-ksp_type richardson
-pc_type lu
-pc_factor_mat_solver_package superlu_dist
-ksp_max_it 1

</PETScOptions>
</LinearSolver>

The LinearSolver block is where different solver parameters are defined and the PETScOptions
block is where a string can be passed to the runtime options database. Additional parame-
ters that can be passed to the solver include SolutionTolerance, MaxIterations and
FunctionTolerance.

Some solvers that are available in PETSc only run serially and will fail if run on more than
one processor. However, for the problem size ranges frequently encountered in power grid
analysis, the serial solvers may be the fastest options. Other parts of the code may be more
scalable so it is desirable to run them in parallel. GridPACK has options that allow users to
run the code in parallel while using a serial solver, without the need to modify any applica-
tion source code. This can be done by including the options

<ForceSerial>true</ForceSerial>
<InitialGuessZero>true</InitialGuessZero>
<SerialMatrixConstant>true</SerialMatrixConstant>

33

in the LinearSolver block. The first option can be used to replicate the linear solver across
all processors in the system and then distribute the answer to processors. The second option
eliminates the need for obtaining an initial guess for the solution from all processors and
provides additional performance gains. The final option can be used if the matrix does not
change between function calls. Only new versions of the RHS vector need to be replicated on
each processor after the first call. This can also result in performance gains.

After configuring the solver, it can be used to solve the set of linear equations by calling the
method

void solve(const Vector &b, Vector &x) const

This function returns the solution x based on the right hand side vector b.

4.3.4 Non-linear Solvers

The math module also supports non-linear solvers for systems of the type A(x)•x = b(x)
but the interface is more complicated than for the linear solvers. In order for the non-linear
solver to work, two functions must be defined by the user. The first evaluates the Jacobian
of the system for a given trial state x of the system and the second computes the right hand
side vector for a given trial state x. The two functions are of type JacobianBuilder and
FunctionBuilder. The JacobianBuilder function is a function with arguments

(const math::Vector &vec, math::Matrix &jacobian)

and FunctionBuilder is a function with arguments

(const math::Vector &xCurrent, math::Vector &newRHS)

These functions need to be added to the system somewhere. They can then be assigned to
objects of type JacobianBuilder and FunctionBuilder and passed to the constructor
of the non-linear solver. There are a number of ways to do this. In the following discussion,
we will adopt the method used in the non-linear solver version of the power flow code that
is distributed with GridPACK.

The first step is to define a struct that can be used to implement the functions needed by the
non-linear solver (the actual implementation contains additional declarations and code, but
the important features of this helper class are outlined here)

struct SolverHelper : private utility::Uncopyable
{

//Constructor
SolverHelper(// Arguments to initialize helper //)

34

{
// Initialize non-linear calculation

}
:

boost::shared_ptr<math::Matrix> matrix; // Jacobian matrix
boost::shared_ptr<math::Vector> X; // Current state

:
void operator() (const math::Vector &xCurrent, math::vector &newRHS) {

// Evaluate RHS vector from current state xCurrent
}
void operator() (const math::Vector &xCurrent,

math::Matrix &Jacobian)
{

// Evaluate Jacobian from current state xCurrent
}

}

The important functions for this discussion are the overloaded operator() functions. In
the application code, this helper struct can be initialized and used to create two functions of
type JacobianBuilder and FunctionBuilder using the syntax

SolverHelper helper(//Arguments to initialize helper //);
math::JacobianBuilder jbuild = boost::ref(helper);
math::FunctionBuilder fbuild = boost::ref(helper);

At this point jbuild and fbuild are pointing to the overloaded functions in helper
that have the appropriate arguments for a function of type JacobianBuilder and type
FunctionBuilder. The boost::ref command provides a reference to the appropriate
function in helper instead of making a copy, this preserves any state that might be present
in helper between invocations of the functions jbuild and fbuild by the solver.

For the power flow application using a non-linear solver, the creation of the solver is a two-
step process. First, a pointer to a non-linear solver interface is created and then a particular
solver instance is assigned to this interface. The power flow application can point to a hand-
coded Newton-Raphson solver or a wrapper to the PETSc library of solvers. The code for this
is the following

boost::scoped_ptr<math::NonlinearSolverInterface> solver;
if (useNewton) {

math::NewtonRaphsonSolver *tmpsolver =
new math::NewtonRaphsonSolver(*(helper.matrix), jbuild, fbuild);

solver.reset(tmpsolver);
} else {

solver.reset(new math::NonlinearSolver(*(helper.matrix), jbuild, fbuild));
}

35

If you are only interested in using the NonlinearSolver, then it is possible to dispense
with the NonlinearSolverInterface and just use the NonlinearSolver directly. The
remaining call to invoke the solver is just

solver->solver(*helper.X);

Additional calls are likely to be added to these to allow user-specified parameters from the
input deck to be sent to the solver. In the case of the NonlinearSolver, these can be used
to specify which PETSc solver should be used. More details on how to use the non-linear
solvers can be found by looking at the powerflow module in the GridPACK source code.

4.4 Network Components

Network component is a generic term for objects representing buses and branches. These
objects determine the behavior of the system and the type of analyses being done. Branch
components can represent transmission lines and transformers while bus components could
model loads, generators, or something else. Both kinds of components could represent mea-
surements (e.g. for a state estimation analysis).

Network components cover a fairly broad range of behaviors and there is little that can be
said about them outside the context of a specific problem. Each component inherits from a
matrix-vector interface, which enables the framework to generate matrices and vectors from
the network in a relatively straightforward way. In addition, buses inherit from a base bus
interface and branches inherit from a base branch interface. The relationship between these
interfaces is shown in Figure 4.5.

These base interfaces provide mechanisms for accessing the neighbors of a bus or branch and
allow developers to specify what data is transferred in ghost exchanges. They do not define
any physical properties of the bus or branch, it is up to application developers to do this.

Of these interfaces, the matrix-vector interfaces are the most important. The MatVecInterface
is used for most calculations that directly model the physics of the power grid and described
problems where the dependent and independent variables are associated with buses.

The GenMatVecInterface is used for problems where variables are also associated with
branches, such as state estimation or Kalman filter calculations. This section will describe
the MatVecInterface, the GenMatVecInterface is described in more detail later in this
document. The MatVecInterface is designed to answer the question of what block of data
is contributed by a bus or branch to a matrix or vector and what the dimensions of the block
are. For example, in constructing the Y-matrix for a power flow problem using a real-valued
formulation, the grid components representing buses contribute a 2×2 block to the diagonal
of the matrix. Similarly, the grid components representing branches contribute a 2×2 block
to the off-diagonal elements. (Note that if the Y-matrix is expressed as a complex matrix,
then the blocks are of size 1×1.) The location of these blocks in the matrix is determined
by the location of the corresponding buses and branches in the network, but the indexing

36

Figure 4.5: Schematic diagram showing the interface hierarchy for network components.

calculations required to determine how this location maps to a location in the matrix can be
made completely transparent to the user via the mapper module.

Because the matrix-vector interface focuses on small blocks, it is relatively easy for power
grid engineers to write the corresponding methods. The full matrices and vectors can then
be generated from the network using simple calls to the mapper interface (see the discussion
below on the mapper module). All of the base network component classes reside in the
gridpack::component namespace.

The primary function of the MatVecInterface class is to enable developers to build the
matrices and vectors used in the solution algorithms for the network. It eliminates a large
number of tedious and error-prone index calculations that would otherwise need to be per-
formed in order to determine where in a matrix a particular data element should be placed.
The MatVecInterface includes basic constructors and destructors. The first set of non-
trivial operations are implemented on buses and set the values of diagonal blocks in the
matrix. Additional functions are implemented on branches and set values for off-diagonal
elements. Vectors can be created by calling functions defined on buses. These functions are
described in detail below.

The functions that are used to create diagonal matrix blocks are

virtual bool matrixDiagSize(int *isize, int *jsize) const

virtual bool matrixDiagValues(ComplexType *values)

37

virtual bool matrixDiagValues(RealType *values)

These functions are virtual functions and are expected to be overwritten by application-
specific bus and branch classes. Depending on whether the application should create real or
complex matrices, either the real or complex versions of matrixDiagValues can be imple-
mented. The default behavior is to return 0 for isize and jsize for matrixDiagSize and
to return false for all functions. These functions will not build a matrix unless overwritten
by the application. Not all functions need to be overwritten by a given bus or branch class.
Generally, only a subset of functions may be needed by an application.

The matrixDiagSize function returns the size of the matrix block that is contributed by
the bus to a matrix. If a single number is contributed by the bus, the matrixDiagSize
function returns 1 for both isize and jsize. Similarly, for a 2×2 block then both isize
and jsize are set to 2. The return value is true if the bus contributes to the matrix, otherwise
it is false. Returning false can occur, for example, if the bus is the reference bus in a power
flow calculation. For a more complicated calculation, such as a dynamic simulation with
multiple generators on some buses, the size of the matrix blocks can differ from bus to bus.
Note that the values returned by matrixDiagSize refer only to the particular bus on which
the function is invoked. It does not say anything about other buses in the system.

The matrixDiagValues function returns the actual values for the matrix block associated
with the bus for which the function is invoked. The values are returned as a linear array
with values returned in column-major order. For a 2×2 block, this means the first value
is at the (0,0) position, the second value is at the (1,0) position, the third value is at the
(0,1) position and the fourth value is at the (1,1) position. This function also returns true if
the bus contributes to the matrix and false otherwise. This may seem redundant, since the
matrixDiagSize function has already returned this information but it turns out there are
certain applications where it is desirable for the matrixDiagSize function to return true
and the matrixDiagValues function to return false. The buffer values is supplied by the
calling program and is expected to be big enough, based on the dimensions returned by the
matrixDiagSize function, to contain all returned values.

The functions that are used to return values for off-diagonal matrix elements are listed below.
These are usually only implemented for branches.

virtual bool matrixForwardSize(int *isize, int *jsize) const

virtual bool matrixForwardValues(ComplexType *values)

virtual bool matrixReverseSize(int *isize, int *jsize) const

virtual bool matrixReverseValues(ComplexType *values)

Only the complex versions of these functions are listed but equivalent functions for real
matrices are available. These functions work in a similar way to the functions for creating
blocks along the diagonal, except that they split off-diagonal matrix calculations into forward

38

elements and reverse elements. The initial approximate location of an off-diagonal matrix el-
ement in a matrix is based in some internal indices assigned to the buses at either end of the
branch. Suppose that these indices are i, corresponding to the “from” bus and j, correspond-
ing to the “to” bus. The “forward” functions assume that the request is for the ij element
while the “reverse” functions assume that the request is for the ji element. Another way of
looking at this is the following: as discussed below, branches contain pointers to two buses.
The first is the “from” bus and the second is the “to” bus. The forward functions assume that
the “from” bus corresponds to the first index of the element, the reverse functions assume
that the “from” bus corresponds to the second index of the element. Note that if a bus does
not contribute to a matrix, then the branches that are connected to the bus should also not
contribute to the matrix.

The final set of functions in the MatVecInterface that are of interest to application devel-
opers are designed to set up vectors. These are usually implemented only for buses. These
functions are analogous to the functions for creating matrix elements

virtual bool vectorSize(int *isize) const

virtual bool vectorValues(ComplexType *values)

The vectorSize function returns the number of elements contributed to the vector by a
bus and the vectorValues returns the corresponding values. The vectorValues function
expects the buffer values to be allocated by the calling program. In addition to functions that
can be used to specify a vector, there is an additional function that can be used to push values
from a vector back onto a bus. This function is

virtual void setValues(ComplexType *values)

The buffer contains values from the vector corresponding to internal variables in the bus and
this function can be used to set the bus variables. The setValues function could be used
to assign bus variables so that they can be used to recalculate matrices and vectors for an
iterative loop in a non-linear solver or so that the results of a calculation can be exported to
an output file. Real versions of the vectorValues and setValues functions are available
for real vectors.

The BaseComponent class contains additional functions that contribute to the base proper-
ties of a bus or branch. Again, most of the functions in this class are virtual and are expected
to be overwritten by actual implementations. However, not all of them need to be overwrit-
ten by a particular bus or branch class. Many of these functions are used in conjunction with
the BaseFactory class, which defines methods that run over all buses and branches in the
network and invokes the functions defined below.

The load function

virtual void load(const boost::shared_ptr<DataCollection> &data)

39

is used to instantiate components based on data in the network configuration file that is used
to create the network. It is used in conjunction with the DataCollection object, which
is described in more detail below. Networks are generally created by first instantiating a
network parser. The parser is used to read in an external network file and create the network
topology. The next step is to invoke the partition function on the network to get all network
elements properly distributed between processors. At this point, the network, including
ghost buses and branches, is complete and each bus and branch has a DataCollection
object containing all the data in the network configuration file that pertains to that particular
bus or branch. The data in the DataCollection object is stored as simple key-value pairs.
This data is used to initialize the corresponding bus or branch by invoking the load function
on all buses and branches in the system. The bus and branch classes must implement the
load function to extract the correct parameters from the DataCollection object and use
them to assign internal component parameters.

Only one type of bus and one type of branch is associated with each network but many
different types of equations can be generated by the network. To allow developers to embed
many different behaviors into a single network and to control at what points in the simulation
those behaviors can be manifested, the concept of modes is used. The function

virtual void setMode(int mode)

can be used to set an internal variable in the component that tells it how to behave. The vari-
able “mode” usually corresponds to an enumerated constant that is part of the application
definition. For example, in a power flow calculation it might be necessary to calculate both
the Y-matrix and the equations for the power flow solution containing the Jacobian matrix
and the right-hand side vector. To control which matrix gets created, two modes are defined:
“YBus” and “Jacobian”. Inside the matrix functions in the MatVecInterface, there is a
condition

if (p_mode == YBus) {
// Return values for Y-matrix calculation

} else if (p_mode == Jacobian) {
// Return values for power flow calculation

}

The variable “p mode” is an internal variable in the bus or branch that is set using the
setMode function.

The function

virtual bool serialWrite(char *string, const int bufsize,
const char *signal = NULL)

40

is used in the serial IO modules described below to write out properties of buses or branches
to standard output. The character buffer “string” contains a formatted line of text rep-
resenting the properties of the bus or branch that is written to standard output, the vari-
able “bufsize” gives the number of characters that “string” can hold, and the variable
“signal” can be used to control what data is written out. The return value is true if the bus
or branch is writing out data and false otherwise. For example, if the application is writing
out the properties of all buses with generators, then the signal “generator” might be passed
to this subroutine. If a bus has generators, then a string is copied into the buffer “string”
and the function returns true, otherwise it returns false. The buffer “string” is allocated by
the calling program. The variable “bufsize” is provided so that the bus or branch can deter-
mine if it is overwriting the buffer. Returning to the generator example, if this call returns
a separate line for each generator, then it is possible that a bus with too many generators
might exceed the buffer size. This could be detected by the implementation if the buffer size
is known. More information on how this function is used can be found in the discussion of
the serial IO modules.

The BaseComponent class also contains two functions that must be implemented if buses
and/or branches need to exchange data with other processors. Data that must be exchanged
needs to be placed in buffers that have been allocated by the network. The bus and branch
objects specify how large the buffers need to be by implementing the function

virtual int getXCBufSize()

This function must return the same value for all buses and all branches in the same bus or
branch classes. Buses can return a different value than branches. For example, in a power
flow calculation, it is necessary that ghost buses get new values of the phase angle and voltage
magnitude increments. These are both real numbers so the getXCBusSize routine needs to
return the value 2*sizeof(double). Note that all buses must return this value even if the
bus is a reference bus and does not participate in the calculation.

This function is queried by the network and used to allocate a buffer of the appropriate size.
The network then informs the bus and branch objects where the location of the buffer is by
invoking the function

virtual void setXCBuf(void *buf)

The bus or branch can use this function to set internal pointers to this buffer that can be used
to assign values to the buffer (which is done before a ghost exchange) or to collect values from
the buffer (which is done after a ghost exchange). Continuing with the powerflow example,
the bus implemention of the setXCBuf function would look like

setXCBuf(void *buf)
{

p_Ang_ptr = static_cast<double*>(buf);
p_Mag_ptr = p_Ang_ptr+1;

}

41

The pointers p Ang ptr and p Mag ptr of type double are internal variables of the bus
implementation and can be used elsewhere in the bus whenever the voltage angle and volt-
age magnitude variables are needed. After a network update operation, ghost buses will
contain values for these variables that were calculated on the home processor that owns the
corresponding bus.

The BaseBusComponent and BaseBranchComponent classes contain a few additional
functions that are specific to whether or not a component is a bus or a branch. The BaseBusComponent
class contains functions that can be used to identify attached buses or branches, determine
if the bus is a reference bus, and recover the original indices of the bus. Other functions are
included in the BaseBusClass but these are not usually required by application developers
and are used primarily to implement other GridPACK functions.

To get a list of pointers to all branches connected to a bus, the function

void getNeighborBranches(
std::vector<boost::shared_ptr<BaseComponent> > &nghbrs) const

can be called. This provides a list of pointers to all branches that have the calling bus as one of
its endpoints. This function can be used inside a bus method to loop over attached branches,
which is a common motif in matrix calculations. For example, to evaluate the contribution to
a diagonal element of the Y-matrix coming from transmission lines, it is necessary to perform
the sum

Yii = −
∑
j,i

Yij

where the Yij are the contribution due to transmission lines from the branch connecting i
and j. The code inside a bus component that evaluates this sum can be written as

std::vector<boost::shared_ptr<BaseComponent> > branches;
getNeighborBranches(branches);
ComplexType y_diag(0.0,0.0);
for (int i=0; i<branches.size(); i++) {

YBranch *branch = dynamic_cast<YBranch*>(branches[i].get());
y_diag += branch->getYContribution();

}

The function getYContribution evaluates the quantity Yij using parameters that are local
to the branch. The return value is then accumulated into the bus variable y diag, which
is eventually returned through the matrixDiagValues function. The dynamic cast is
necessary to convert the pointer from a BaseComponent object to the application class
YBranch. The BaseComponent class has no knowledge of the getYContribution func-
tion, this is only implemented in the class YBranch.

A function that is similar to getNeighborBranches is

42

void getNeighborBuses(
std::vector<boost::shared_ptr<BaseComponent> > &nghbrs) const

which can be used to get a list of the buses that are connected to the calling bus via a single
branch.

Many power grid problems require the specification of a special bus as a reference bus. This
designation can be handled by the two functions

void setReferenceBus(bool status)

bool getReferenceBus() const

The first function can be used (if called with the argument true) to designate a bus as the
reference bus and the second function can be called to inquire whether a bus is the reference
bus. A reference bus is usually set when the network configuration file is read in and does
not need to be set explicitly by the application.

Finally, it is often useful for exporting results if the original index of the bus is available. This
can be recovered using the function

int getOriginalIndex() const

The functions in the BaseBusComponent class only work correctly after a call to the base
factory method setComponents, which is described below. Other functions in the BaseBusComponent
class are needed within the framework but are not usually required by application develop-
ers.

The BaseBranchComponent class is similar to the BaseBusComponent class and provides
basic information about branches and the buses at either end of the branch. To retrieve
pointers to the buses at the ends of the branch, the following two functions are available

boost::shared_ptr<BaseComponent> getBus1() const

boost::shared_ptr<BaseComponent> getBus2() const

The getBus1 function returns a pointer to the “from” bus, the getBus2 function returns a
pointer to the “to” bus.

Two other functions in the BaseBranchComponent class that are useful for writing output
are

int getBus1OriginalIndex() const

int getBus2OriginalIndex() const

43

These functions get the original index of “from” and “to” buses. Unlike buses, the branches
are not characterized by a single index. Similar to the functions in the BaseBusComponent
class, the functions in the BaseBranchComponent class will not work correctly until the
setComponents method has been called in the base factory class.

4.5 Data Interface

The main route for incorporating information about buses and branches into GridPACK ap-
plications is the DataCollection class. Each bus and branch (including ghost buses and
ghost branches) has an associated DataCollection object that contains all the parame-
ters associated with that object. The DataCollection class works in conjunction with the
dictionary.hpp header file, which defines a unified vocabulary for labeling power grid
parameters that are used in applications. The goal of using the dictionary is to create a
unified vocabulary for power grid parameters within GridPACK that is independent of the
source of the parameters.

The DataCollection class is a simple container that can be used to store key-value pairs
and resides in the gridpack::component namespace. When the network is created using
a standard parser to read a network configuration file (see more on parsers in section 4.8),
each bus and branch created in the network has an associated DataCollection object. This
object, in turn, contains all parameters from the configuration file that are associated with
that particular bus or branch. The possible key values in the DataCollection object are
defined in dictionary.hpp and represent parameters found in power grid applications.
Parameters associated with a given key can be retrieved from the DataCollection object
using some simple accessors.

Data can be stored in two ways inside the DataCollection object. The first method as-
sumes that there is only a single instance of the key-value pair, the second assumes there are
multiple instances. This second case can occur, for example, if there are multiple genera-
tors on a bus. Generators are characterized by a collection of parameters and each generator
has its own set of parameters. The generator parameters can be indexed so that they can be
matched with a specific generator.

When a network is created by parsing an external configuration file, for example a PSS/E
format .raw file, the network topology and component objects are created and distributed
over processors. All network components are in an initial state that is determined by the
constructor for that object. This is usually very simple, since at the moment when the object
is created, there is very little information available about how to initialize it. Along with the
component object, a DataCollection object is also created. The DataCollection object
stores all the parameters from the network configuration file using a key-value scheme. The
situation is illustrated schematically in Figure 4.6.

Each bus and branch in the figure has an associated DataCollection and network com-
ponent (bus or branch class) object associated with it. After the network is created, the
DataCollection objects are filled with key-value pairs while network components are in

44

Figure 4.6: Schematic diagram representing relationship between the DataCollection objects
(green) and the network components (purple). The arrows represent the transfer of data from
the data collections to the network components during the load operation.

45

an uninitialized state. The information can be transferred from the DataCollection ob-
jects to the network components by implementing the network component load function.
The load function has a pointer to the associated DataCollection object passed when it
is called, so that the contents of the data collection can be accessed using the functions de-
scribed below.

Assuming that a parameter only appears once in the data collection, the contents of a DataCollection
object can be accessed using the functions

bool getValue(const char *name, int *value)
bool getValue(const char *name, long *value)
bool getValue(const char *name, bool *value)
bool getValue(const char *name, std::string *value)
bool getValue(const char *name, float *value)
bool getValue(const char *name, double *value)
bool getValue(const char *name, ComplexType *value)

These functions return true if a variable of the correct type is stored in the DataCollection
object with the key “name”, otherwise it returns false. For example, there is only one param-
eter BUS VOLTAGE MAG for each bus, so this value can be obtained using the double variant
of getValue. All getValue functions (including the functions below) leave the value of the
variable unchanged if the corresponding name is not found in the data collection. This can
be used to implement default values using the following construct

double var;
var = 1.0;
getValue("SOME_VARIABLE_NAME",&var);

If the variable is not found in the data collection, the default value is 1. The returned bool
value can also be used to implement defaults or take alternative actions if the value is not
found.

If the variable is stored multiple times in the DataCollection, then it can be accessed with
the functions

bool getValue(const char *name, int *value, const int idx)
bool getValue(const char *name, long *value, const int idx)
bool getValue(const char *name, bool *value, const int idx)
bool getValue(const char *name, std::string *value, const int idx)
bool getValue(const char *name, float *value, const int idx)
bool getValue(const char *name, double *value, const int idx)
bool getValue(const char *name, ComplexType *value, const int idx)

where idx is an index that identifies a particular instance of the key. In this case, the key
is essentially a combination of the character string name and the index. An example is the

46

parameter describing the generator active power output, GENERATOR PG. Because there can
be more than one generator on the bus, it is necessary to include an additional index to indi-
cate which generator values are required. Internally, the key then becomes the combination
GENERATOR PG:idx. The index values are 0-based, so the first value has index 0, the second
value has index 1 and so on up to N-1, where N is the total number of values. Note that
because the combination of name and index is actually stored internally as a key, it is not
necessary that all values of the index between 0 and N-1 be stored in the data collection. If
some generators are missing some parameters, that is allowed. It is up to the application to
account for these missing values.

The data collection is generally filled with values after the parser is called to create the net-
work. The nomenclature for these values can be found in the dictionary.hpp file located
under src/parser under the main GridPACK directory. Users are encouraged to look at
this file to find out what parameters might be available to their applications. Note that dif-
ferent parameters may be available depending on the source file that was used to create that
calculation. The PSS/E version 23 and version 33 files currently supported in GridPACK
have significant differences and values that are present in the version 33 files are often not
available from a version 23 file.

The aim of using the dictionary is to separate GridPACK applications from data sources so
that applications can easily switch between different file formats without having to rewrite
code within the application itself. The dictionary provides a common internal nomenclature
for power grid parameters. Parsers for different file formats need to map the input data from
those formats to the dictionary, but once this is done, all GridPACK applications should, in
principle, be able to use any source of data. The dictionary.hpp file itself has a very
simple structure and consists of parameter definitions and some supporting documentation.
Some examples of entries to the dictionary.hpp file are given below.

/**
* Bus voltage magnitude, in p.u.
* type: real float
*/
#define BUS_VOLTAGE_MAG "BUS_VOLTAGE_MAG"

/**
* Bus voltage phase angle, in degrees
* type: real float
*/
#define BUS_VOLTAGE_ANG "BUS_VOLTAGE_ANG"

/**
* Number of generators on a bus
* type: integer
*/
#define GENERATOR_NUMBER "GENERATOR_NUMBER"

47

/**
* Non-blank alphanumeric machine identifier, used to distinguish
* among multiple machines connected to the same bus
* type: string
* indexed
*/
#define GENERATOR_ID "GENERATOR_ID"

/**
* Generator active power output, entered in MW
* type: real float
* indexed
*/
#define GENERATOR_PG "GENERATOR_PG"

The names of these parameters follow the pattern that the first part of the name describes the
type of network object that the parameter is associated with and the remainder of the name
is descriptive of the particular parameter associated with that object. The second part of the
name is frequently derived from the corresponding nomenclature used in PSS/E format files.

The #define statements that assign each character string to a C preprocessor symbol are
used as a debugging tool. The getValue calls should use the preprocessor string instead of
including the quotes. If a string has been mistyped or misspelled, the compiler will throw an
error. The difference between using

getValue("BUS_VOLTAGE_MAG",&val);

and

getValue(BUS_VOLTAGE_MAG,&val);

is that the second construct will throw an error if BUS VOLTAGE MAG was misspelled or not
included in the dictionary.

The dictionary entries also contain some descriptive information about the parameter itself.
The two most important pieces of information are the type of data the string represents and
whether or not the parameter is indexed. The type should be used to match the type of vari-
able with the corresponding parameter and the indexed keyword can be used to determine if
an index needs to be included when accessing the data. For indexed quantities, there should
be a parameter that indicates how many times the value appears in the data collections. In
the snippet above, the generator parameters are indexed, while the bus variables are not.
The GENERATOR NUMBER parameter is also not indexed and indicates how many generators
are associated with the bus, as well as the number of times an indexed value associated with
generators can appear in the data collection.

48

The DataCollection objects can also be used to transfer data between different networks.
This is important for chaining different types of calculations together. For example, a power-
flow or state estimation calculation might be used to initialize a dynamic simulation and
the DataCollection object can be used as a mechanism for transferring data between
the two different networks. Because of this, the functions for adding more data to the
DataCollection and the functions for overwriting the values of existing data are useful.
New key value pairs can be added to a data collection object using the functions

void addValue(const char *name, int value)
void addValue(const char *name, long value)
void addValue(const char *name, bool value)
void addValue(const char *name, char *value)
void addValue(const char *name, float value)
void addValue(const char *name, double value)
void addValue(const char *name, ComplexType value)

void addValue(const char *name, int value, const int idx)
void addValue(const char *name, long value, const int idx)
void addValue(const char *name, bool value, const int idx)
void addValue(const char *name, char *value, const int idx)
void addValue(const char *name, float value, const int idx)
void addValue(const char *name, double value, const int idx)
void addValue(const char *name, ComplexType value, const int idx)

Existing values can be overwritten with the functions

bool setValue(const char *name, int value)
bool setValue(const char *name, long value)
bool setValue(const char *name, bool value)
bool setValue(const char *name, char *value)
bool setValue(const char *name, float value)
bool setValue(const char *name, double value)
bool setValue(const char *name, ComplexType value)

bool setValue(const char *name, int value, const int idx)
bool setValue(const char *name, long value, const int idx)
bool setValue(const char *name, bool value, const int idx)
bool setValue(const char *name, char *value, const int idx)
bool setValue(const char *name, float value, const int idx)
bool setValue(const char *name, double value, const int idx)
bool setValue(const char *name, ComplexType value, const int idx)

49

4.6 Factories

The network component factory is an application-dependent piece of software that is de-
signed to manage interactions between the network and the network component objects.
Most operations in the factory run over all buses and all branches and invoke some opera-
tion on each component. An example is the “load” operation. After the network is read
in from an external file, it consists of a topology and a set of simple data collection objects
containing key-value pairs associated with each bus and branch. The load operation then
runs over all buses and branches and instantiates the appropriate objects by invoking a local
load method that takes the values from the data collection object and uses it to instantiate
the bus or branch. The application network factory is derived from a base network factory
class that contains some additional routines that set up indices, assign neighbors to individ-
ual buses and branches and assign buffers. The neighbors are originally only known to the
network, so a separate operation is needed to push this information down into the bus and
branch components. The network component factory may also execute other routines that
contribute to setting up the network and creating a well-defined state.

Factories can be derived from the BaseFactory class, which is a templated class that is
based on the network type. It resides in the gridpack::factory namespace. The con-
structor for a BaseFactory object has the form

BaseFactory<MyNetwork>(boost::shared_ptr<MyNetwork> network)

The BaseFactory class supplies some basic functions that can be used to help instantiate
the components in a network. Other methods can be added for particular applications by in-
heriting from the BaseFactory class. The two most important functions in BaseFactory
are

virtual void setComponents()

virtual void setExchange()

The setComponents method pushes topology information available from the network into
the individual buses and branches using methods in the base component classes. This opera-
tion ensures that operations such as getNeighborBuses, etc. work correctly. The topology
information is originally only available in the network and it requires additional operations
to imbed it in individual buses and branches. Being able to access this information directly
from the buses and branches can simplify application programming substantially.

The setExchange function allocates buffers and sets up pointers in the components so that
exchange of data between buses and branches can occur and ghost buses and branches can re-
ceive updated values of the exchanged parameters. This function loops over the getXCBusSize
and setXCBuf commands defined in the network component classes and guarantees that
buffers are properly allocated and exposed to the network components.

Two other functions are defined in the BaseFactory class as convenience functions. The
first is

50

virtual void load()

This function loops over all buses and branches and invokes the individual bus and branch
load methods. This moves information from the DataCollection objects that are instan-
tiated when the network is created from a network configuration file to the bus and branch
objects themselves. The second convenience function is

virtual void setMode(int mode)

This function loops over all buses and branches in the network and invokes each bus and
branch setMode method. It can be used to set the behavior of the entire network in single
function call.

Some utility functions in the BaseFactory class that are occasionally useful are

bool checkTrue(bool flag)

bool checkTrueSomewhere(bool flag)

The checkTrue function returns true if the variable flag is true on all processors, otherwise
it returns false. This function can be used to check if a condition has been violated somewhere
in the network. The checkTrueSomewhere function returns true if flag is true on at least
one processor. This function can be used to check if a condition is true anywhere in the
system.

4.7 Mapper Module

The mappers are a collection of generic capabilities that can be used to generate a matri-
ces or vectors from the network components. This is done by running over all the network
components and invoking methods in the matrix-vector interface. The mapper is basically a
transformation that converts a set of network components into a matrix or vector based on
the behavior of their matrix-vector interfaces. It has no explicit dependencies on either the
network components or the type of analyses being performed so this capability is applica-
ble across a wide range of problems. At present there are three types of mapper, the stan-
dard mapper described here that is implemented on top of the MatVecInterface, a more
generalized mapper that utilizes the GenMatVecInterface and a mapper for generating
matrices resembling “fat” vectors. These are dense matrices that are basically a collection
of column vectors. The generalized mapper and its corresponding interface are described in
section 7, along with the mapper for generating fat vectors. The mapper discussed in this
section is used for problems where both dependent and independent variables are associated
with buses, which is the case for problems such as power flow calculations and dynamic sim-
ulation. Other problems, such as state estimation, have variables associated with both buses
and branches and require the more general interface.

51

The basic matrix-vector interface contains functions that provide two pieces of information
about each network component. The first is the size of the matrix block that is contributed by
the component and the second is the values in that block. Using this information, the mapper
can calculate the dimensions of the matrix and where individual elements in the matrix are
located. The construction of a matrix by the mapper is illustrated in Figure 4.7 for a small
network. Figure 4.7(a) shows a hypothetical network. The contributions from each network
component are shown in Figure 4.7(b). Note that some buses and branches do not contribute
to the matrix. This could occur in real systems because the transmission line corresponding to
the branch has failed or because a bus represents the reference bus. In addition, it is possible
that buses and branches can contribute different size blocks to the matrix. The mapping of
the individual contributions from the network in Figure 7(b) to initial matrix locations is
shown in Figure 4.7(c). This is followed by elimination of gaps in the matrix in Figure 4.7(d).

The most complex part of generating matrices and vectors is implementing the functions in
the MatVecInterface. Once this has been done, actually creating matrices and vectors
using the mappers is quite simple. The MatVecInterface is associated with two mappers,
one that creates matrices from buses and branches and a second that can create vectors from
buses. Both mappers are templated objects based on the type of network being used and use
the gridpack::mapper namespace. The FullMatrixMap object runs over both buses and
branches to set up a matrix. The constructor is

FullMatrixMap<MyNetwork>(boost::shared_ptr<MyNetwork> network)

The network is passed in to the object via the constructor. The constructor sets up a number
of internal data structures based on what mode has been set in the network components. For
example, for a power flow application where it might be necessary to create both a Y-matrix
and a Jacobian matrix, it would be necessary to create two mappers. If the first mapper is
created while the mode is set to construct the Y-matrix, then it will be necessary to instantiate
a second mapper to create the Jacobian for a power flow calculation. Before instantiating the
second matrix, the mode should be set to Jacobian. Once the mapper has been created, a
matrix can be generated using the call

boost::shared_ptr<gridpack::math::Matrix> mapToMatrix()

This function creates a new matrix and returns a pointer to it. If a matrix already exists and
it is only necessary to update the values, then the functions

void mapToMatrix(
boost::shared_ptr<gridpack::math::Matrix> &matrix)

void mapToMatrix(gridpack::math::Matrix &matrix)

can be used. These functions use the existing matrix data structures and overwrite the values
of individual elements. For these to work, it is necessary to use the same mapper that was
used to create the original matrix and to have the same mode set in the network components.

Additional operations that can be used on existing matrices include

52

Figure 4.7: A schematic diagram of the matrix map function. The bus numbers in (a) and (b)
map to approximate row and column locations in (c). (a) a small network (b) matrix blocks
associated with branches and buses. Not that not all blocks are the same size and not all
buses and branches contribute (c) initial construction of matrix based on network indices (d)
final matrix after eliminating gaps. 53

void overwriteMatrix(boost::shared_ptr<gridpack::math::Matrix> matrix)

void overwriteMatrix(gridpack::math::Matrix &matrix)

void incrementMatrix(boost::shared_ptr<gridpack::math::Matrix> matrix)

void incrementMatrix(gridpack::math::Matrix &matrix)

These operations are designed to support making small changes in an existing matrix in-
stead of reconstructing the full matrix from scratch. This can happen in contingency cal-
culations or simulations of faults where a single grid element goes out or changes value.
Instead of rebuilding the entire matrix, it is possible to modify only a small portion if it. To
use these functions, it is necessary to define at least two modes in the network components.
The first mode is used to build the original matrix, the second is used to make changes.
All MatVecInterface functions that return true using the second mode (the one making
changes) must return true for the first mode (used to build the original matrix). Further-
more, all block sizes for the second mode must match the block sizes in the first mode. The
overwriteMatrix functions replace the values in the matrix with the values returned by
the MatVecInterface functions, the incrementMatrix functions add these values to
whatever is already in the matrix.

The vector mapper works in an entirely analogous way to the matrix mapper. The constructor
for the BusVectorMap class is

BusVectorMap<MyNetwork>(boost::shared_ptr<MyNetwork> network)

and the function for building a new vector is

boost::share_ptr<gridpack::math::Vector> mapToVector()

The functions for overwriting the values of an existing vector are

void mapToVector(
boost::shared_ptr<gridpack::math::Vector> &vector)

void mapToVector(gridpack::math::Vector &vector)

The vector map can also be used to write values back to buses using the function

void mapToBus(const gridpack::math::Vector &vector)

This function will copy values from the vector into the bus using the setValues function in
the MatVecInterface.

54

4.8 Parser Module

The parser modules are designed to read an external network file, set up the network topol-
ogy and assign any parameter fields in the file to simple fields. The parsers do not partition
the network, they are only responsible for reading in the network and distributing the differ-
ent network elements in a way that guarantees that not too much data ends up on any one
processor. The parsers are also not responsible for determining if the input is compatible
with the analysis being performed. This can be handled, if desired, by building checks into
the network factory. The parsers are only responsible for determining if they can read the
file.

Currently, GridPACK only supports two file formats. Files based on the PSS/E PTI version 23
and version 33 formats can be read in using the classes PTI23 parser and PTI33 parser.
Both parsers can also read PSS/E formatted .dyr files that are used to read in extra parameters
used in dynamic simulation. The parsers are templated classes that again use the network
type as a template argument. Both PTI23 parser and PTI33 parser are located in the
gridpack::parser namespace. These classes have only a few important functions. The
first are the constructors

PTI23_parser<MyNetwork>(boost::shared_ptr<MyNetwork> network)

PTI33_parser<MyNetwork>(boost::shared_ptr<MyNetwork> network)

The remaining functions are common to both parsers. To read a PSS/E PTI file containing a
network configuration and generate a network, the parser calls the method

void parse(const std::string &filename)

where filename refers to the location of the network configuration file. To use this parser, the
network object with the appropriate bus and branch classes is instantiated and then passed
to the constructor of the PTI23 parser or PTI33 parser object. The parse method is
then invoked with the name of the network configuration file passed in as an argument and
the network is filled out with buses and branches. The parameters in the network configu-
ration file are stored as key-value pairs in the DataCollection object associated with each
bus and branch. Once the network partition method has been called, the network is fully
distributed and ghost buses and branches have been created. Other operations operations
can then be performed. A variant on parse is the command

void externalParse(const std::string &filename)

This command can be used to parse .dyr files containing dynamic simulation parameters.
The difference between this function and parse is that externalParse assumes that the
network already exists and that the parameters that are read in will be added to it. This
command should therefore only be called after a network has been created using parse.

55

As discussed in section 4.5, another key part of the parsing capability is the dictionary.hpp
file. This is designed to provide a common nomenclature for parameters associated with
power grid components. The definitions in the dictionary.hpp are used to extract param-
eters from the DataCollection objects created by the parser. For example, the parameter
describing the resistance of a transmission element is given the common name BRANCH R.
This string is defined as a macro in the dictionary.hpp, which provides compile time er-
ror checking on the name. The goal of using the dictionary is that all parsers will eventually
store the branch resistance parameter in the DataCollection object using this common
name. Applications can then switch easily between different network configuration file for-
mats by simply exchanging parsers, which will all store corresponding parameters using a
common naming convention that can used within the code to access data.

4.9 Serial IO Module

The serial IO module is designed to provide a simple mechanism for writing information
from selected buses and/or branches to standard output or a file using a consistent order-
ing scheme. Individual buses and/or branches implement a write method that will write
bus/branch information to a single string. This information usually consists of bus or branch
identifiers plus some parameters that are desired in the output. The serial IO module then
gathers this information, moves it to the head node, and writes it out in a consistent order.
An example of this type of output is shown in Figure 4.8.

Note that the output is ordered by bus index (which matches the ordering of the buses in
the original network configuration file). This ordering would be preserved regardless of the
number of processors used in the calculation.

Like the mapper, the serial IO classes are relatively easy to use. Most of the complexity is
associated with implementing the serialWrite methods in the buses and branches. Data
can be written out for buses and/or branches using either the SerialBusIO class or the
SerialBranchIO class. These are again templated classes that take the network as an argu-
ment in the constructor. Both classes reside in the gridpack::serial io namespace. The
SerialBusIO constructor has the form

SerialBusIO<MyNetwork>(int max_str_len,
boost::shared_ptr<MyNetwork> network)

The variable max str len is the length, in bytes, of the maximum size string you would want
to write out using this class and network is a pointer to the network that is used to generate
output. The value of max str len is used to allocate internal memory and also determines
how much data needs to be moved around each time data from the entire network is written
out. As the value of this parameter increases, the amount of memory needed and the amount
of data that needs to move increases, so this value should be kept to a minimum, if possible.

Two additional functions can be used to actually generate output. They are

56

Bus Voltages and Phase Angles

Bus Number Phase Angle Voltage Magnitude

1 0.000000 1.060000
2 -4.982589 1.045000
3 -12.725100 1.010000
4 -10.312901 1.017671
5 -8.773854 1.019514
6 -14.220946 1.070000
7 -13.359627 1.061520
8 -13.359627 1.090000
9 -14.938521 1.055932
10 -15.097288 1.050985
11 -14.790622 1.056907
12 -15.075585 1.055189
13 -15.156276 1.050382
14 -16.033645 1.035530

Figure 4.8: Example output from buses in a 14 bus problem.

57

void header(const char *string) const

and

void write(const char *signal = NULL)

The header method is a convenience function that will only write the buffer string from the
head processor (process 0) and can be used for creating the headings above an output listing.
The write function traverses all the buses in the network and writes out the strings gener-
ated by the serialWrite methods in the buses. The SerialBusIO object is responsible for
reordering these strings in a consistent manner, even if the buses are distributed over many
processors. The optional variable “signal” is passed to the serialWrite methods and can
be used to control what output is listed. For example, in one part of a simulation it might be
desirable to list the voltage magnitude and phase angle from a powerflow calculation and in
another part of the calculation to list the rotor angle for a generator. These two outputs could
be distinguished from each other in the serialWrite function using the signal variable.

To generate the output in Figure 4.8, the following calls are used

gridpack::serial_io::SerialBusIO<MyNetwork> busIO(128,network);
busIO.header("\n Bus Voltages and Phase Angles\n");
busIO.header(

"\n Bus Number Phase Angle Voltage Magnitude\n");
busIO.write();

The first call creates the SerialIOBus object and specifies the internal buffers size (128
bytes). This buffer must be large enough to incorporate the output from any call to one of
the serialWrite calls in the bus components. The next two lines print out the header
on top of the bus listing and the last line generates the listing itself. The serialWrite
implementation looks like

bool gridpack::myapp::MyBus::serialWrite(char *string,
const int bufsize, const char *signal)

{
double pi = 4.0*atan(1.0);
double angle = p_a*180.0/pi;
sprintf(string, " %6d %12.6f %12.6f\n",

getOriginalIndex(),angle,p_v);
return true;

}

For this simple case, signal is ignored as well as the variable bufsize. The return value
of the function is set to true. If more than one type of bus listing was desired, additional
conditions based on the value of signal could be included. For the case of generators,

58

the length of the output may vary from one bus to the next since buses can have different
numbers of generators associated with them. It may therefore be important to check the
length of the output string being generated against the size of the buffer to make sure there is
no overwrite and to take some kind of appropriate action if there is. Output from generators
is also conditional on the bus having some generators. In this case, the return value, true or
false can be used to signal whether of not the bus is returning some data.

If you wish to direct the output to a file, then calling the function

void open(const char *filename)

will direct all output from the serial IO object to the file specified in the variable filename.
Similarly, calling the function

void close(void)

will close the file and all subsequent writes are directed back to standard output. The same
SerialBusIO object can be used to write data to multiple different files, as long as the files
are opened and closed sequentially. If two files need to be used at the same time, then two
SerialBusIO objects need to be created. Two additional methods can be used to further
control where output goes. If a file already exists, you can use the function

boost::shared_ptr<std::ofstream> getStream()

to recover a pointer to the file stream currently being used by the SerialBusIO object. This
can then be used to redirect output from some other part of the code to the same file. The
function

void setStream(boost::shared_ptr<std::ofstream> stream)

can be used to redirect the output from the SerialIOBus object to an already existing file.
The main use of these two functions is to direct the output from both buses and branches
to the same file instead of standard output. The SerialBranchIO module is similar to the
SerialBusIO module but works by creating listings for branches. The constructor is

SerialBranchIO<MyNetwork>(int max_str_len,
boost::shared_ptr<MyNetwork> network)

and the header and write methods are

void header(const char *string) const

void write(const char *signal = NULL)

59

These have exactly the same behavior as in the SerialBusIO class. Similarly, the methods

void open(const char *filename)

void close(void)

boost::shared_ptr<std::ofstream> getStream()

void setStream(boost::shared_ptr<std::ofstream> stream)

can be used to redirect output to a file instead of standard output.

The usual method for directing the output from both a SerialBusIO object and SerialBran-
chIO object to the same file is to use the calling sequence

SerialBusIO<MyNetwork> busIO(max_str_len, network);
SerialBranchIO<MyNetwork> branchIO(max_str_len, network);
busIO.open("file.dat");
branchIO.setStream(busIO.getStream());

The file can be closed by calling close from either busIO or branchIO. In some cases it
may be useful to use the serial IO module to extract information from the network to a data
structure that can then be used in some other analysis. This can be done in the case of the
contingency analysis to get a list of properties for all buses or branches in the system that
can then be used as input to some other module. Instead of writing the strings to a file, the
output can be sent to a vector of strings instead, where each string in the vector represents the
output from a single bus or branch. The individual strings in the vector can then be parsed
to extract properties of individual buses or branches. For both the SerialBusIO class and
SerialBranchIO classes, the method is

std::vector<std::string> writeStrings(const char *signal = NULL)

If the output describes the properties of something like generators or individual transmission
lines, each string may describe multiple devices. Note that this vector is only produced on one
processor (corresponding to rank 0 on whatever communicator the network is using). Other
processors will have a zero length vector. The contents of each string can then be parsed to
extract other parameters (see section of String Utilities for some useful tools for doing this).
The powerflow output described above can be parsed to get the voltage magnitude and phase
angle on each bus. This information can then be stored in a vector that can be saved to the
GlobalStore or StatBlock data structures described described in sections 6.9 and 6.12.

60

4.10 Configuration Module

The configuration module is designed to provide a central mechanism for directing infor-
mation from the input file to the components making up a given application. For example,
information about convergence thresholds and maximum numbers of iterations might need
to be picked up by the solver module from an external configuration file. The configura-
tion module is designed to read files using a simple XML format that supports a hierarchical
input. This can be used to control which input gets directed to individual objects in the
application, even if the object is a framework component and cannot be modified by the
application developer.

The Configuration class is in the namespace gridpack::utility. This class follows
the C++ singleton pattern and does not have a public constructor. The static method configuration()
returns a pointer to the shared instance of this class and guaratantees that the same instance
is used by all modules in an application. The shared instance can be initialized with data
from an external file using the code

gridpack::utility::Configuration * c =
gridpack::utility::Configuration::configuration() ;

c->open(input_file, MPI_COMM_WORLD);

The input file uses XML syntax. The single top-level element must be named “Configuration”
but other elements may have module- and application-specific names. Refer elsewhere in
this document for details. For illustration purposes, an example configuration file might
look like:

<?xml version="1.0" encoding="utf-8"?>
<Configuration>

<PowerFlow>
<networkConfiguration> IEEE118.raw </networkConfiguration>

</PowerFlow>
<DynamicSimulation>

<StartTime> 0.0 </StartTime>
<EndTime> 0.1 </EndTime>
<TimeStep> 0.001 </TimeStep>
<Faults>

<Fault>
<StartFault> 0.03 </StartFault>
<EndFault> 0.06 </EndFault>
<Branch> 3 7 </Branch>

</Fault>
<Fault>

<StartFault> 0.07 </StartFault>
<EndFault> 0.06=8 </EndFault>

61

<Branch> 4 8 </Branch>
</Fault>

</Faults>
</DynamicSimulation>

</Configuration>

A value in this configuration file is accessed with a call to the overloaded method get().
The following line will return the value of the input file corresponding to the XML field
‘‘networkConfiguration’’

std::string s =
c->get("Configuration.PowerFlow.networkConfiguration",
"IEEE.raw");

The first argument has type Configuration::KeyTypewhich is a typedef of std::string.
Values are selected by hierarchically named “keys” using “.” as a separator. In the example
input file, “PowerFlow” is a block under “Configuration” and “networkConfiguration” is, in
turn, a block under “PowerFlow”. The second argument in get is a default value that is used
if the field corresponding to the key can’t be found. There are overloaded versions of get()
for accessing standard C++ data types: bool, int, long, float, double, ComplexType
and std::string. For each type there are two variants. For integers these look like

int get(const KeyType &, int default_value) const ;

bool get(const KeyType &, int *) const;

The first variant takes a key name and a default value and returns either the value in the
configuration file or the default value when none is specified. In the second variant, a Boolean
value is returned indicating whether or not the value was in the configuration file and the
second argument points to an object that is updated with the configuration value when it is
present. For strings, the second argument is passed by reference.

The method getCursor(KeyType) returns a pointer to an internal element in the hierar-
chy. This “cursor” supports the same get()methods as above but the names are now relative
to the name of the cursor. Thus, we might modify the previous example to:

Configuration::CursorPtr p =
c->getCursor("Configuration.PowerFlow");

std::string s = p->get("networkConfiguration",
"IEEE14.raw");

An additional use of such cursors is to access lists of values. The method

62

typedef std::vector<CursorPtr> ChildCursors;

void children(ChildCursors &);

can be used to get a vector of all the elements that are children in the name hierarchy of
some element. These children need not have unique names, as illustrated by the children of
the “Faults” element shown above. In this example, each of the children is a cursor that can
be used to access “StartFault”, “EndFault”, and “Branch” parameters for each of the “Fault”
blocks. Again, returning to the sample input above, the following code will return a list of
faults

Configuration::CursorPtr p =
c->getCursor("Configuration.DynamicSimulation.Faults");
ChildCursors faults;
p->children(faults);

The cursor p is set so that is is pointing at the Faults block in the input. The children function
then picks up all XML blocks on one level and returns a list of cursor pointers to those blocks.
The individual data elements in faults can be accessed using the following loop

int nfaults = faults.size()
for (int i=0; i<nfaults; i++) {

double start = faults[i]->get("StartFault", 0.0);
double end = faults[i]->get("EndFault", 0.0);
std::string indices = faults[i]->get("Branch", "-1 -1");
// Do something with these parameters

}

Note that this method does not have any way of distinguishing between different blocks be-
low Faults and if two types of blocks where listed within the Faults block, the children
method would pick up both of them.

63

Chapter 5

Developing Applications

The previous section outlined most of the basic modules in the GridPACK framework. In this
section, we provide an overview of how to use these modules to create actual applications by
discussing the development of a power flow simulation application in detail. Actual exam-
ples of a power flow application can be found by looking at an example code located under
the top-level GridPACK directory in src/applications/examples/powerflow. Users can also
look at the power flow module located in the

src/applications/modules/powerflow

directory. The main difference between the power flow example code and the power flow
module is that the module breaks up the power flow calculation into more separate function
calls and the module also has options for using a non-linear solver. The power flow bus and
branch classes are located in the directory src/applications/components/pf matrix.

A schematic of a power flow code based on GridPACK is shown in Figure 5.1. For different
power grid problems, the details of the code will be different, but most of these motifs will
appear at some point or other. The main differences will probably be in feedback loops as
results from one part of the calculation are fed back into other parts. For example, an iterative
solver will need to update the current values of the network components, which can then be
used to generate new matrices and vectors that are fed back into the next iteration of the
solver. The diagram in Figure 5.1 is not complete, but gives an overall view of code structure
and data movement.

As shown in the figure, application developers will need to focus on writing two or three
sets of modules. The first is the network components. These are the descriptions of the
physics and/or measurements that are associated with buses and branches in the power grid
network. The network factory is a module that initializes the grid components on the network
after the network is originally created by the import module. The power flow problem is
simple enough that it can use a non-linear solver directly from the math module but even a
straightforward solution such as this requires the developer to overwrite some functions in
the factory that are used in the non-linear solver iterations.

64

Figure 5.1: Schematic of program flow for a power flow simulation. The yellow ovals are
distributed data objects, the green blocks are GridPACK framework components and the
blue blocks are application specific code. External files are red.

65

Most of the work involved in creating a new application is centered on creating the bus and
branch classes. This discussion will describe in some detail the routines that need to be writ-
ten in order to develop a working power flow simulation. Additional application modules for
dynamic simulation and contingency analysis have also been included in the distribution and
users are encouraged to look at these modules for additional coding examples on how to use
GridPACK. The discussion below is designed to illustrate how to build an application and for
brevity has left out some code compared to the working implementation. The source code
contains more comment lines as well as some additional diagnostics that may not appear
here. However, the overall design is the same and readers who have a good understanding of
the following text should have no difficulty understanding the power flow source code.

For the power flow calculation, the buses and branches will be represented by the classes
PFBus and PFBranch. PFBus inherits from the BaseBusComponent class, so it automati-
cally inherits the BaseComponent and MatVecInterface classes as well. The first thing
that must be done in creating the PFBus component is to overwrite the load function in the
BaseComponent class. The original function is just a placeholder that performs no action.
The load function should take parameters from the DataCollection object associated
with each bus and use them to initialize the bus component itself. For the PFBus compo-
nent, a simplified load function is

void gridpack::powerflow::PFBus::load(
const boost::shared_ptr<gridpack::component
::DataCollection> &data)

{
data->getValue(CASE_SBASE, &p_sbase);
data->getValue(BUS_VOLTAGE_ANG, &p_angle);
data->getValue(BUS_VOLTAGE_MAG, &p_voltage);
p_v = p_voltage;
double pi = 4.0*atan\eqref{GrindEQ__1_0_}; p_angle = p_angle*pi/180.0;
p_a = p_angle;
int itype; data->getValue(BUS_TYPE, &itype);
if (itype == 3) {

setReferenceBus(true);
}
bool lgen;
int i, ngen, gstatus;
double pg, qg;
if (data->getValue(GENERATOR_NUMBER, &ngen)) {

for (i=0; i<ngen; i++) {
lgen = true;
lgen = lgen && data->getValue(GENERATOR_PG, &pg,i);
lgen = lgen && data->getValue(GENERATOR_QG, &qg,i);
lgen = lgen && data->getValue(GENERATOR_STAT, &gstatus,i);
if (lgen) {

p_pg.push_back(pg);

66

p_qg.push_back(qg);
p_gstatus.push_back(gstatus);

}
}

}
}

This version of the load function has left off additional properties, such as shunts and loads
and some transmission parameters, but it serves to illustrate how load is suppose to work.
The load method in the base factory class will run over all buses, get the DataCollection
object associated with each bus and then call the PFBus::loadmethod using the DataCollection
object as the argument. The parameters p sbase, p angle, p voltage are private mem-
bers of PFBus. The variables corresponding to the keys CASE SBASE, BUS VOLTAGE ANG,
BUS VOLTAGE MAG were stored in the DataCollection object when the network configu-
ration file was parsed. They are retrieved from this object using the getValue functions and
assigned to p sbase, p angle, p voltage. Additional internal variables are also assigned
in a similar manner. The value of the BUS TYPE variable can be used to determine whether
the bus is a reference bus. As mentioned previously, the CASE SBASE etc. are just preproces-
sor symbols that are defined in the dictionary.hpp file, which must be included in the file
defining the load function. The dictionary.hpp file can be found in the src/parser
directory of the GridPACK distribution.

The variables referring to generators have a different behavior than the other variables. A
bus can have multiple generators and these are stored in the DataCollection object with
an index. The total number of generators on the bus is also stored in the DataCollection
object with the key GENERATOR NUMBER. First the number of generators is retrieved and then
a loop is set up so that all the generator variables can be accessed. The generator parameters
are stored in local private arrays. The loop shows how the return value of the getValue
function can be used to verify that all three parameters for a generator were found. If they
aren’t found, then the generator is incomplete and the generator is not added to the local
data. The boolean return value can also be used to determine if the bus has other properties
and to set internal flags and parameters accordingly. The load function for the PFBranch is
constructed in a similar way, except that the focus is on extracting branch related parameters
from the DataCollection object.

Both the PFBus and PFBranch classes contain an application-specific function called setYBus
that is used to set up values in the Y-matrix. There is also a function in the powerflow factory
class that runs over all buses and branches and calls this function. The setYBus function in
PFBus is

void gridpack::powerflow::PFBus::setYBus(void)
{

gridpack::ComplexType ret(0.0,0.0);
std::vector<boost::shared_ptr<BaseComponent> > branches;
getNeighborBranches(branches);

67

int size = branches.size();
int i;
for (i=0; i<size; i++) {

gridpack::powerflow::PFBranch *branch
= dynamic_cast<gridpack::powerflow::PFBranch*>

(branches[i].get());
ret -= branch->getAdmittance();
ret -= branch->getTransformer(this);
ret += branch->getShunt(this);

}
if (p_shunt) {

gridpack::ComplexType shunt(p_shunt_gs,p_shunt_bs);
ret += shunt;

}
p_ybusr = real(ret);
p_ybusi = imag(ret);

}

This function evaluates the contributions to the Y-Matrix associated with buses. The real and
imaginary parts of this number are stored in the internal variables p ybusr and p ybusi.
The subroutine first creates the local variable ret and then gets a list of pointers to neighbor-
ing branches from the BaseBusComponent function getNeighborBranches. The func-
tion then loops over each of the branches and uses the dynamic cast function in C++ to
convert the BaseComponent pointer to a PFBranch pointer. Note that the cast is necessary
since the getNeighborBranches function only returns a list of BaseComponent object
pointers. The BaseComponent class does not contain application-specific functions such
as getAdmittance. The getAdmittance, getTransformer and getShunt methods re-
turn the contributions from transmission elements, transformers, and shunts associated with
the branch. These are accumulated into the ret variable.

The reason that the getAdmittance variable has no argument while both getTransformer
and getShunt take the pointer “this” as an argument is that the admittance contribution
from simple transmission elements is symmetric with respect to whether or not the calling
bus is the “from” or “to” buses while the transformer and shunt contributions are not. This
can be seen by examining the getTransformer function.

gridpack::ComplexType
gridpack::powerflow::PFBranch::getTransformer(

gridpack::powerflow::PFBus *bus)
{

gridpack::ComplexType ret(p_resistance,p_reactance);
if (p_xform) {

ret = -1.0/ret;
gridpack::ComplexType a(cos(p_phase_shift),sin(p_phase_shift));
a = p_tap_ratio*a;

68

if (bus == getBus1().get()) {
ret = ret/(conj(a)*a);

} else if (bus == getBus2().get()) {
// ret is unchanged

}
} else {

ret = gridpack::ComplexType(0.0,0.0);
}
return ret;

}

The variables p resistance, p reactance, p phase shift, and p tap ratio are all in-
ternal variables that are set based on the variables read in from using the load method
or are set in other initialization steps. The boolean variable p xform variable is set to
true in the PFBranch::load method if transformer-related variables are detected in the
DataCollection objects associated with the branch, otherwise it is false.

The PFBranch version of the setYBus function is

void gridpack::powerflow::PFBranch::setYBus(void)
{

gridpack::ComplexType ret(p_resistance,p_reactance);
ret = -1.0/ret;
gridpack::ComplexType a(cos(p_phase_shift),sin(p_phase_shift));
a = p_tap_ratio*a;
if (p_xform) {

p_ybusr_frwd = real(ret/conj(a));
p_ybusi_frwd = imag(ret/conj(a));
p_ybusr_rvrs = real(ret/a);
p_ybusi_rvrs = imag(ret/a);

} else {
p_ybusr_frwd = real(ret);
p_ybusi_frwd = imag(ret);
p_ybusr_rvrs = real(ret);
p_ybusi_rvrs = imag(ret);

}
gridpack::powerflow::PFBus *bus1 =
dynamic_cast<gridpack::powerflow::PFBus*>(getBus1().get());

gridpack::powerflow::PFBus *bus2 =
dynamic_cast<gridpack::powerflow::PFBus*>(getBus2().get());

p_theta = (bus1->getPhase() - bus2->getPhase());
}

Note that the branch version of the setYBus function calculates different values for the
Y-matrix contribution depending on whether the first index in the Y-matrix element corre-
sponds to bus 1 (the forward direction) or bus 2 (the reverse direction). These are stored

69

in the separate variables p ybusr frwd and p ybusi frwd for the forward directions and
p ybusr rvrs and p ybusi rvrs for the reverse direction. This routine also calculates the
variable p theta which is equal to the difference in the phase angle variable associated with
the two buses at either end of the branch. This last variable provides an example of calculat-
ing a branch parameter based on the values of parameters located on the terminal buses.

The setYBus functions described above are used in the power flow components to set some
basic parameters. These are eventually incorporated into the Jacobian matrix and PQ vector
that constitute the matrix and right hand side vector of the power flow equations. To build
the matrix, it is necessary to implement the matrix size and matrix values functions in the
MatVecInterface. The functions for setting up the matrix are discussed in detail in the
following, the vector functions are simpler but follow the same pattern. The mode used
for setting up the Jacobian matrix is “Jacobian”. The corresponding matrixDiagSize
routine is

bool gridpack::powerflow::PFBus::matrixDiagSize(int *isize,
int *jsize) const

{
if (p_mode == Jacobian) {

*isize = 2;
*jsize = 2;
return true;

} else if (p_mode == YBus) {
*isize = 1;
*jsize = 1;
return true;

}
}

This function handles two modes, stored in the internal variable p mode. If the mode equals
Jacobian, then the function returns a contribution to a 2×2 matrix. In the case that the
mode is “YBus” the function would return a contribution to a 1×1 matrix. (The Jacobian
is treated as a real matrix where the real and complex parts of the problem are treated as
separate variables, the Y-matrix is handle as a regular complex matrix). The corresponding
code for returning the diagonal values is

bool gridpack::powerflow::PFBus::matrixDiagValues(ComplexType *values)
{

if (p_mode == YBus) {
gridpack::ComplexType ret(p_ybusr,p_ybusi);
values[0] = ret;
return true;

} else if (p_mode == Jacobian) {
if (!getReferenceBus()) {

70

values[0] = -p_Qinj - p_ybusi * p_v *p_v;
values[1] = p_Pinj - p_ybusr * p_v *p_v;
values[2] = p_Pinj / p_v + p_ybusr * p_v;
values[3] = p_Qinj / p_v - p_ybusi * p_v;
if (p_isPV) {

values[1] = 0.0;
values[2] = 0.0;
values[3] = 1.0;

}
return true;

} else {
values[0] = 1.0;
values[1] = 0.0;
values[2] = 0.0;
values[3] = 1.0;
return true;

}
}

}

In this implementation, the return values are of type ComplexType, even if they are real.
For real values, the complex part is set to zero. If the mode is “YBus”, the function returns
a single complex value. If the mode is “Jacobian”, the function checks first to see if the
bus is a reference bus or not. If the bus is not a reference bus, then the function returns
a 2×2 block corresponding to the contributions to the Jacobian matrix coming from a bus
element. If the bus is a reference bus, the function returns a 2×2 identity matrix. This is
a result of the fact that the variables associated with a reference bus are fixed. In fact, the
variables contributed by the reference bus could be eliminated from the matrix entirely by
returning false if the mode is “Jacobian” and the bus is a reference bus for both the matrix
size and matrix values routines. This would also require some adjustments to the off-diagonal
routines as well. There is an additional condition for the case where the bus is a “PV” bus. In
this case one of the independent variables is eliminated by setting the off-diagonal elements
of the block to zero and the second diagonal element equal to 1. The values are returned
in column-major order, so values[0] corresponds to the (0,0) location in the 2×2 block,
values[1] is the (1,0) location, values[2] is the (0,1) location and values[3] is the
(1,1) location.

The matrixForwardSize and matrixForwardValues routines, as well as the correspond-
ing Reverse routines, are implemented in the PFBranch class. These functions determine the
off-diagonal blocks of the Jacobian and Y-matrix. The matrixForwardSize routine is given
by

bool gridpack::powerflow::PFBranch::matrixForwardSize(int *isize,
int *jsize) const

{

71

if (p_mode == Jacobian) {
gridpack::powerflow::PFBus *bus1

= dynamic_cast<gridpack::powerflow::PFBus*>(getBus1().get());
gridpack::powerflow::PFBus *bus2

= dynamic_cast<gridpack::powerflow::PFBus*>(getBus2().get());
bool ok = !bus1->getReferenceBus();
ok = ok && !bus2->getReferenceBus();
if (ok) {

*isize = 2;
*jsize = 2;
return true;

} else {
return false;

}
} else if (p_mode == YBus) {

*isize = 1;
*jsize = 1;
return true;

}
}

If the mode is “YBus”, the size function returns a 1×1 block for the off-diagonal matrix block.
For the Jacobian, this function first checks to see if either end of the branch is a reference bus
by evaluating the Boolean variable “ok”. If neither end is the reference bus then the function
returns a 2×2 block, if one end is the reference bus then the function returns false. The
false value indicates that this branch does not contribute to the matrix. For this system, the
matrixReverseSize function is the same. For applications that return a non-square block,
the reverse function will transpose the block dimensions relative to the forward direction.

The matrixForwardValues function is

bool gridpack::powerflow::PFBranch::matrixForwardValues(
ComplexType *values)

{
if (p_mode == Jacobian) {

gridpack::powerflow::PFBus *bus1
= dynamic_cast<gridpack::powerflow::PFBus*>(getBus1().get());

gridpack::powerflow::PFBus *bus2
= dynamic_cast<gridpack::powerflow::PFBus*>(getBus2().get());

bool ok = !bus1->getReferenceBus();
ok = ok && !bus2->getReferenceBus();
if (ok) {

double cs = cos(p_theta);
double sn = sin(p_theta);
values[0] = (p_ybusr_frwd*sn - p_ybusi_frwd*cs);

72

values[1] = (p_ybusr_frwd*cs + p_ybusi_frwd*sn);
values[2] = (p_ybusr_frwd*cs + p_ybusi_frwd*sn);
values[3] = (p_ybusr_frwd*sn - p_ybusi_frwd*cs);
values[0] *= ((bus1->getVoltage())*(bus2->getVoltage()));
values[1] *= -((bus1->getVoltage())*(bus2->getVoltage()));
values[2] *= bus1->getVoltage();
values[3] *= bus1->getVoltage();
bool bus1PV = bus1->isPV();
bool bus2PV = bus2->isPV();
if (bus1PV & bus2PV) {

values[1] = 0.0;
values[2] = 0.0;
values[3] = 0.0;

} else if (bus1PV) {
values[1] = 0.0;
values[3] = 0.0;

} else if (bus2PV) {
values[2] = 0.0;
values[3] = 0.0;

}
return true;

} else {
return false;

}
} else if (p_mode == YBus) {

values[0] = gridpack::ComplexType(p_ybusr_frwd,p_ybusi_frwd);
return true;

}
}

For the “YBus” mode, the function simply returns the complex contribution to the Y-matrix.
For the “Jacobian” mode, the function first determines if either end of the branch is con-
nected to the reference bus. If it is, then the function returns false and there is no contribution
to the Jacobian. If neither end of the branch is the reference bus then the function evaluates
the 4 elements of the 2×2 contribution to the Jacobian coming from the branch. To do this,
the branch needs to get the current values of the voltages on the buses at either end by using
the getVoltage accessor functions that have been defined in the PFBus class. Finally, if
one end or the other of the branch is a PV bus, then some variables need to be eliminated
from the equations. This can be done by setting appropriate values in the 2×2 block equal to
zero.

The matrixReverseValues function is similar to the matrixForwardValues functions
with a few key differences. 1) the variables p ybusr rvrs and p ybusi rvrs are used in-
stead of p ybusr frwd and p ybusi frwd 2) instead of using cos(p theta) and sin(p theta)
the function uses cos(-p theta) and sin(-p theta) since p theta is defined as differ-

73

ence in phase angle on bus 1 minus the difference in phase angle on bus 2 and 3) the values
that are set to zero in the conditions for PV buses are transposed. The PV conditions are the
same as the forward case if both bus 1 and bus 2 are PV buses, if only bus 1 is a PV bus then
values[2] and values[3] are zero and if only bus2 is a PV bus then values[1] and
values[3] are zero.

The functions for setting up vectors are similar to the corresponding matrix functions, al-
though they are a bit simpler. The vector part of the MatVecInterface contains one func-
tion that does not have a counterpart in the set of matrix functions and that is the setValues
function. This function can be used to push values in a vector object back into the buses that
were used to generate the vector. For the Newton-Raphson method used to solve the power
flow equations, it is necessary, at each iteration, to push the current solution back into the
buses so they can be used to evaluate new Jacobian and right hand side vectors. The solution
vector contains the current increments to the voltage and phase angle. These are written back
to the buses using the function

void gridpack::powerflow::PFBus::setValues(
gridpack::ComplexType *values)

{
p_a -= real(values[0]);
p_v -= real(values[1]);
*p_vAng_ptr = p_a;
*p_vMag_ptr = p_v;

}

This function is paired with a mapper that is used to create a vector with the same pattern
of contributions. If for example, the matrix equation Ax = b is being solved, then the map-
per used to create the right hand side vector b should be used to push results back onto the
buses using the mapToBus method. The setValues method above takes the contributions
from the solution vector and uses then to decrement the internal variables p a (voltage an-
gle) and p v (voltage magnitude). The new values of p a and p v are then assigned to the
buffers p vAng ptr and p vMag ptr so that they can be exchanged with other buses. This
is discussed below.

The two routines that need to be created in the PFBus class to copy data to ghost buses
are both simple. There is no need to create corresponding routines in the PFBranch class
since branches do not exchange data in the power flow calculation. Two values need to be
exchanged between buses, the current voltage angle and the current voltage magnitude. This
requires a buffer that is the size of two doubles so the getXCBufSize function is written as

int gridpack::powerflow::PFBus::getXCBufSize(void)
{

return 2*sizeof(double);
}

74

The setXCBuf assigns the buffer created in the base factory setExchange function to in-
ternal variables used within the PFBus component. It has the form

void gridpack::powerflow::PFBus::setXCBuf(void *buf)
{

p_vAng_ptr = static_cast<double*>(buf);
p_vMag_ptr = p_vAng_ptr+1;
*p_vAng_ptr = p_a;
*p_vMag_ptr = p_v;

}

The buffer created in the setExchange routine is split between the two internal pointers
p vAng ptr and p vMag ptr. These are then initialized to the current values of p a and p v.
Whenever the updateBuses routine is called, the buffers on the ghost buses are refreshed
with the current values of the variables from the processes that own the corresponding buses.
Note that both the getXCBufSize and the setXCBuf routines are only called during the
setExchange routine. They are not called during the actual bus updates.

One final function in the PFBus and PFBranch class that is worth taking a brief look at is the
set mode function. This function is used to set the internal p mode variable that is defined in
both classes. The PFMode enumeration, which contains both the “YBus” and “Jacobian”
modes, is defined within the gridpack::powerflow namespace. The setMode function for
both buses and branches has the form

void gridpack::powerflow::PFBus::setMode(int mode)
{

p_mode = mode;
}

This function is triggered on all buses and branches if the setMode method in the factory
class is called. Once the PFBus and PFBranch classes have been defined, it is possible to
define a PFNetwork using a typdef statement. This can be done using the line

typedef network::BaseNetwork<PFBus, PFBranch > PFNetwork;

in the header file declaring the PFBus and PFBranch classes. This type can then be used in
other powerflow files that need to create objects from templated classes.

The discussion above summarizes many of the important functions in the PFBus and PFBranch
classes. Additional functions are included in these classes that are not discussed here, but
the basic principles involved in implementing the remaining functions have been covered.

The first part of creating a new application is writing the network component classes. The
second part is implementing the application-specific factory. For the power flow application,
this is the PFFactory class, which inherits from the BaseFactory class. Most of the impor-
tant functionality in PFFactory is derived from the BaseFactory class and is used without

75

modification, but several application-specific functions have been added to PFFactory that
are used to set internal parameters in the network components. As an example, consider the
setYBus function

void gridpack::powerflow::PFFactory::setYBus(void)
{
int numBus = p_network->numBuses();
int numBranch = p_network->numBranches();
int i;
for (i=0; i<numBus; i++) {

p_network->getBus(i).get()->setYBus();
}
for (i=0; i<numBranch; i++) {

p_network->getBranch(i).get()->setYBus();
}

}

This function loops over all buses and branches and invokes the setYBus method in the
individual PFBus and PFBranch objects. The first two lines in the factory setYBus method
get the total number of buses and branches on the process. A loop over all buses on the
process is initiated and a pointer to the bus object is obtained via the getBus bus method
in the BaseNetwork class. This pointer is returned as a pointer of type PFBus, so it is not
necessary to do a dynamic cast on it and the setYBus method, which is not part of the base
class, can be invoked. The same set of steps is then repeated for the branches. The factory
can be used to create other methods that invoke functions on buses and/or branches.

Most of these functions follow the same general form as the setYBus method just described.
The last part of building an application is creating the top level application driver that actu-
ally instantiates all the objects used in the calculation and controls the program flow. Run-
ning the code is broken up into two parts. The first is creating a main program and the second
is creating the application driver. The main routine is primarily responsible for initializing
the communication libraries and creating the application object, the application object then
controls the application itself. The main program for the powerflow application is

main(int argc, char **argv)
{

gridpack::parallel::Environment env(argc,argv);

gridpack::powerflow::PFApp app;
app.execute();

}

The first line in this program creates a variable of type Environment that initializes the MPI
and GA communication libraries as well as the math initialization routine (the initialization

76

happens in the constructor, so all that is necessary is to create the variable). More can be
found out about the Environment class in Section 6.2. The code then instantiates a power
flow application object and calls the execute method for this object. The remainder of the
power flow application is contained in the PFApp::execute method. Finally, when the
application has finished running, the main program cleans up the communication and math
libraries. The communication libraries are handled when the env variable goes out of scope
and calls the Environment destructor. The main reason for breaking the code up in this
way instead of including the execute function as part of main is to force the invocation of all
the destructors in the GridPACK objects used to implement the application. Otherwise, these
destructors get called after the communication libraries have been finalized and the program
will fail to exit cleanly.

The top level control of the application is embedded in the power flow execute method.
The execute method starts off with the code

gridpack::parallel::Communicator world;
boost::shared_ptr<PFNetwork> network(new PFNetwork(world));

gridpack::utility::Configuration *config
= gridpack::utility::Configuration::configuration();

config->open("input.xml",world);
gridpack::utility::Configuration::Cursor *cursor;
cursor = config->getCursor("Configuration.Powerflow");
std::string filename;
if (!cursor->get("networkConfiguration", &filename)) {

printf("No network configuration specified\n");
return;

}
gridpack::parser::PTI23_parser<PFNetwork> parser(network);
parser.parse(filename.c_str());

network->partition();

The first two lines create a communicator for this application and use it to instantiate a
PFNetwork object (note that this is really a BaseNetwork template class that is instan-
tiated using the PFBus and PFBranch classes as template arguments). The network ob-
ject exists but has no buses or branches associated with it. The next few lines get an in-
stance of the configuration object and use this to open the input.xml file. This filename
has been hardwired into this implementation but it could be passed in as a runtime argu-
ment, if desired. The code then creates a Cursor object and initializes this to point into the
Configuration.Powerflow block of the input.xml file. The cursor can then be used to
get the contents of the networkConfiguration block in input.xml, which corresponds
to the name of the network configuration file containing the power grid network. This file is
assumed to use the PSS/E version 23 format. After getting the file name, the code creates a
PTI23 parser object and passes in the current network object as an argument. When the

77

parse method is called, the parser reads in the file specified in filename and uses that to
add buses and branches to the network object. At this point, the network has all the bus
and branches from the configuration file, but no ghost buses or branches exist and buses and
branches are not distributed in an optimal way. Calling the partition method on the network
then distributes the buses and branches and adds appropriate ghost buses and branches.

The next set of calls initialize the network components and prepare the network for compu-
tation.

gridpack::powerflow::PFFactory factory(network);
factory.load();

factory.setComponents();
factory.setExchange();

network->initBusUpdate();

factory.setYBus();

The first call creates a PFFactory object and instantiates it with a reference to the cur-
rent network. PFFactory is defined as an instance of the BaseFactory class using a
PFNetwork as the template argument. The next line calls the BaseFactory load method
which invokes the component load method on all buses and branches. These use data from
the DataCollection objects to initialize the corresponding bus and branch objects. Note
that when the partition function creates the ghost bus and branch objects, it copies the as-
sociated DataCollection objects to these ghosts so the parameters from the network con-
figuration file are available to instantiate all objects in the network. There is no need to do a
data exchange at this point in the code in order to get current values on the ghost objects.

The next two calls are also implemented as BaseFactory methods. The setComponents
method sets up pointers in the network components that point to neighboring branches and
buses (in the case of buses) and terminal buses (in the case of branches). It is also responsi-
ble for setting up internal indices that are used by the mapper functions to create matrices
and vectors. The setExchange method sets up the buffers that are used to exchange data
between locally owned buses and branches and their corresponding ghost images on other
processors. The call to initBusUpdate creates internal data structures that are used to
exchange bus data between processors and the final factory call to setYBus evaluates the
Y-matrix contributions from all network components. The network is fully initialized at this
point and ready for computation.

The next calls create the Y-matrix and the matrices used in the Newton-Raphson iteration
loop.

factory.setMode(YBus);
gridpack::mapper::FullMatrixMap<PFNetwork> mMap(network);
boost::shared_ptr<gridpack::math::Matrix> Y = mMap.mapToMatrix();

78

factory.setSBus();
factory.setMode(RHS);
gridpack::mapper::BusVectorMap<PFNetwork> vMap(network);
boost::shared_ptr<gridpack::math::Vector> PQ = vMap.mapToVector();

factory.setMode(Jacobian);
gridpack::mapper::FullMatrixMap<PFNetwork> jMap(network);
boost::shared_ptr<gridpack::math::Matrix> J = jMap.mapToMatrix();
boost::shared_ptr<gridpack::math::Vector> X(PQ->clone());

The first call sets the internal p mode variable in all network components to “YBus”. The sec-
ond call constructs a FullMatrixMap object mMap and the third call uses the mapToMatrix
method to generate a Y-matrix based on the “YBus” mode. The factory then calls the setSBus
method that sets some additional network component parameters (again, by looping over all
buses and invoking a setSBus method on each bus). The next three lines set the mode to
“RHS”, create a BusVectorMap object and create the right hand side vector in the powerflow
equations using the mapToVector method. This builds the vector based on the “RHS” mode.
The next three lines create the Jacobian using the same pattern as for the Y-matrix. The mode
gets set to “Jacobian”, another FullMatrixMap object is created and this is used to create
the Jacobian using the mapToMatrix method. Two separate mappers are used to create the
Y-matrix and the Jacobian. This is required unless there is some reason to believe that the
“YBus” and “Jacobian” modes generate matrices with the same dimensions and exactly the
same fill pattern. This is not generally the case, so different mappers should be created for
each matrix in the problem. The last line creates a new vector by cloning the PQ vector. The
X vector has the same dimension and data layout as PQ so it could be used with the vMap
object.

Once the vectors and matrices for the problem have been created and set to their initial
values, it is possible to start the Newton-Raphson iterations. The code to set up the first
Newton-Raphson iteration is

double tolerance = 1.0e-6;
int max_iteration = 100;
ComplexType tol;

gridpack::math::LinearSolver solver(*J);
solver.configure(cursor);

int iter = 0;

X->zero();
solver.solve(*PQ, *X);
tol = PQ->normInfinity();

79

The first three lines define some parameters used in the Newton-Raphson loop. The toler-
ance and maximum number of iterations are hardwired in this example but could be made
configurable via the input deck using the Configuration class. The next line creates a
linear solver based on the current value of the Jacobian, J. The call to the configure method
allows configuration parameters in the input file to be passed directly to the newly created
solver. The iteration counter is set to zero and the value of X is also set to zero. The linear
solver is called with PQ as the right hand side vector and X as the solution. An initial value of
the tolerance is set by evaluating the infinity norm of PQ. The calculation can now enter the
Newton-Raphson iteration loop

while (real(tol) > tolerance && iter < max_iteration) {
factory.setMode(RHS);
vMap.mapToBus(X);
network->updateBuses();

vMap.mapToVector(PQ);
factory.setMode(Jacobian);
jMap.mapToMatrix(J);

X->zero();
solver.solve(*PQ, *X);
tol = PQ->normInfinity();
iter++;

}

This code starts by pushing the values of the solution vector back on to the buses using the
same mapper that was used to create PQ. The network then calls the updateBus routine so
that the ghost buses have new values of the voltage angle and magnitude parameters from
the solution vector. New values of the Jacobian and right hand side vector are created based
on the solution values from the previous iteration. Note that since J and PQ already exist, the
mappers are just overwriting the old values instead of creating new data objects. The linear
solver is already pointing to the Jacobian matrix so it automatically uses the new Jacobian
values when calculating the solution vector X. If the norm of the new PQ vector is still larger
than the tolerance, the loop goes through another iteration. This continues until the tolerance
condition is satisfied or the number of iterations reaches the value of max iteration.

If the Newton-Raphson loop converges, then the calculation is essentially done. The last part
of the calculation is to write out the results. This can be accomplished using the code

gridpack::serial_io::SerialBusIO<PFNetwork> busIO(128,network);
busIO.header("\n Bus Voltages and Phase Angles\n");
busIO.header("\n Bus Number Phase Angle");
busIO.header(" Voltage Magnitude\n");
busIO.write();

80

The first line creates a serial bus IO object that assumes that no line of output will exceed
more than 128 characters. The next three lines write out the header for the output data and
the last line writes a listing of data from all buses. The data from each bus is generated by
the serialWrite method defined in the PFBus class. A similar set of calls can be used to
write out data from the branches. This completes the execute method and the overview of
the power flow application.

81

Chapter 6

Advanced Functionality

The core operations supported by GridPACK have been described above and these can be
used in to create many different kinds of power grid applications. This section will describe
features that are more advanced but can be extremely useful in certain cases. Additional
capabilities of the GridPACK framework include

1. Communicators and task managers that can be used to create multiple levels of paral-
lelism and implement dynamic load balancing schemes

2. A generalized matrix-vector interface to handle applications where the dependent and
independent variables are associated with both buses and branches. The MatVecInterface
described above can only be used for systems where the dependent and independent
variables are associated solely with buses

3. A “slab” matrix-vector interface for creating matrices based on multiple values on each
of the network components. This can be used for algorithms such as Kalman filter

4. Profiling and error handling capabilities

5. A hashed data distribution capability that can be used to direct network data to the
processors that own the corresponding network components

This functionality is described in more detail in the following sections.

6.1 Communicators

The subject of communicators has already been mentioned in the context of the construc-
tor for the BaseNetwork class. This section will describe communicators in more detail and
will show how the GridPACK communicators can be used to partition a large calculation into
separate pieces that all run concurrently. A communicator can crudely be though of as a com-
munication link between a group of processors. Whenever a process needs to communicate

82

Figure 6.1: Schematic diagram illustrating the use of multiple communicators.

with another process it needs to specify the communicator over which that communication
will occur. When a parallel job is started, it creates a “world” communicator to which all
processes implicitly belong. Any process can communicate with any other process via the
world communicator. Other communicators can be created by an application and it is pos-
sible for a process to belong to multiple communicators. The concept of communicators is
particularly important for restricting the scope of “global” operations. These are operations
that require every process in the communicator to participate. Failure of a process to partic-
ipate in the operation usually results in the calculation stalling because multiple processors
are waiting for a communication from a process that is not part of the global operation. A
program can remain in this state indefinitely. Many of the module functions in GridPACK
represent global operations and contain embedded calls that act collectively on a communi-
cator. In order for two separate calculations to proceed concurrently, they must be run on
disjoint sets of processors using separate communicators.

The use of communicators to create multiple concurrent parallel tasks within an applica-
tion is usually straightforward to implement but it is frequently much more confusing to
understand. A diagram of a set of 16 processes that are divided into 4 groups each contain-
ing 4 processes is shown schematically in Figure 6.1. In this example, each subgroup could
potentially execute a separate parallel task within the larger parallel calculation.

Global operations on the world communicator involve all 16 processes, global operations on
one of the task communicators just involve the 4 processes in the group used to define the
task communicator. If a network object is created on one of the task communicators, then

83

a global operation such as the bus update only occurs between the 4 processes in the task
communicator. The network object is, in a certain sense, “invisible” to the processes outside
that communicator. If a network is created on a sub-communicator, then all objects derived
from the network, such as factories, parsers, serial IO objects, etc. are also associated with
the same sub-communicator.

The communicator supports some basic operations that are commonly used in parallel pro-
gramming. GridPACK has been designed to minimize the amount of explicit communication
that must be handled by application developers, but it is occasionally useful to have access
to standard communication protocols in applications. In particular, it is useful to be able to
divide a given communicator into a set of non-overlapping sub-communicators. The basic
operations supported by the GridPACK communicator class are described below.

The GridPACK Communicator class is in the gridpack::parallel namespace. The con-
structor for this class creates a copy of the world communicator. The constructor has the
form

Communicator(void)

and takes no arguments. Two basic functions associated with communicators are

int size(void) const

and

int rank(void) const

The first function returns the number of processors in the communicator and the second re-
turns the index of the processor within the communicator. If the communicator contains N
processes, then the rank will be an integer ranging from 0 to N-1. The process corresponding
to rank 0 is often referred to as the head process or head node for the communicator. Note
that if a process belongs to more than one communicator, its rank may differ depending on
which communicator is being referred to. Information on size and rank is used extensively
when explicitly programming in parallel. GridPACK has tried to abstract much of this pro-
gramming so that developers do not need to pay attention to it, but it is still occasionally
useful to be able to access these numbers. For example, the header function in the SerialIO
classes is essentially equivalent to the following code fragment

Communicator comm;
char buf[128];
sprint(buf,"My message\n");
if (comm.rank() == 0) {

printf("%s",buf);
}

84

This code creates some output. If the condition was not there, the code would print out the
message from all N processors in the world communicator and N copies of “My message”
would appear in the output. The condition restricting the print statement to process 0 guar-
antees that the message appears only once.

A more important use of communicators is to divide up the world communicator into sepa-
rate communicators that can be used to run independent parallel calculations. This is known
as multi-level parallelism. Two functions can be used to split up an existing communicator
into sub-communicators. The first is split

Communicator split(int color) const

This function divides the calling communicator into sub-communicators based on the color
variable. All processors with the same value of the color variable end up in the same com-
municator. Thus, if 16 processors on the world communicator are divided up such that pro-
cesses 0-3 are color 0, processes 4-7 are color 1, processes 8-11 are color 2 and processes 12-15
are color 3, then split will generate 4 sub-communicators from the world communicator such
that 0-3 are on one communicator, 4-7 are on another communicator and so on. Note that
this function divides the communicator completely into complementary pieces with all pro-
cesses in the old communicator ending up in a new communicator and no process ending up
in more than one new communicator.

A second function that can be used to decompose a communicator into sub-communicators
is divide. This function has the form

Communicator divide(int nsize) const

Each sub-communicator returned by this function contains at most nsize processes. The
function will try and create as many communicators of size nsize as possible. For example,
if the calling communicator contains 10 processes and nsize is set to 4, then this function
will create 3 sub-communicators, two of which contain 4 processors and one containing 2
processors.

An example of how communicators can be used to create multiple levels of parallelism is
illustrated in Figure 11. The example has 8 tasks that can be evaluated independently. The
first row in Figure 6.2 shows four processors. Two of the 8 tasks are run on each processor
so if each task has been parallelized then it needs to run on a communicator with only 1
processor in it. The second row shows the same calculation running on 8 processors. In this
case, each processor only has 1 task associated with it but each task is still running on a single
processor. If the tasks have not been parallelized, then this is as far as you can go. However,
if the tasks have been parallelized, then you can move on to the configuration shown in the
third line using 16 processors. In this case, the system has been divided into 8 groups, each
containing two processors. Each group has its own separate subcommunicator and each task
can be run in parallel on two processors. This gives additional speed-up over what can be
achieved by simply distributing tasks to separate processors.

85

Figure 6.2: Schematic diagram of 8 tasks evaluated using multiple levels of parallelism. The
first row represents 8 tasks on 4 processors, the second row is 8 tasks on 8 processors and the
third row is 8 tasks running on 16 processors.

Additional functions are available for communicators that support basic parallel computing
tasks. The objective of GridPACK is to abstract most aspects of parallel computing so that
users do not need to deal with them directly, but there are some tasks, particularly those
associated with collecting and organizing data, that are not difficult to program but are dif-
ficult to generalize. Some support for simple parallel operations is useful in these cases. The
following operations can be used to sum data across all processors

void sum(float *x, int nvals) const
void sum(double *x, int nvals) const
void sum(int *x, int nvals) const
void sum(long *x, int nvals) const
void sum(ComplexType *x, int nvals) const

The array x holds the values to be summed and nvals is the number of values in x. This
operation can be used to compute the total of some quantity after partial sums have been cal-
culated on each processor. It can also be used to collect an array of values across a collection
of processors by having each processor compute a portion of an array and then using the sum
operation to create a complete copy of the array on all processors.

Maximum and minimum values can be calculated using the functions

void max(float *x, int nvals) const
void max(double *x, int nvals) const
void max(int *x, int nvals) const
void max(long *x, int nvals) const

void min(float *x, int nvals) const

86

void min(double *x, int nvals) const
void min(int *x, int nvals) const
void min(long *x, int nvals) const

Again, a global maximum or minimum can be calculated by first computing the local maxi-
mum or minim on each processor and then evaluating it across processors.

One other common parallel construct that may be useful in some contexts is the barrier or
synchronization function. In GridPACK, this is available as the function

void sync() const

The sync function does not allow any processor in the communicator to proceed beyond
this call until all processors in the communicator have reached the call. This is used in
some parallel programming situations to guarantee a consistent state across all processors.
In general, there should be relatively little need for this call in GridPACK. See, however, the
comment below at the end of the section on GlobalStore.

6.2 Environment

GridPACK applications need to initialize several libraries in order to execute properly. These
can be initialized explicitly by the user in their application but they can also be initialized
by creating a single Environment object at the start of the code. This module uses just the
gridpack namespace. The constructor for this object will automatically call all the appro-
priate initialization functions for libraries used by GridPACK. This object can also be used to
support an inline help message that can be used to document how to use the application.

There are two main constructors for this class

Environment(int argc, char **argv)

Environment(int argc, char **argv, const char* help)

The argc and argv arguments are the standard command line variables used in C and C++
main programs. These will be passed to the math library and MPI initialization. Other op-
tions can also be passed from the command line as well. Currently, the only command line
options that are supported directly by the Environment class are -h and -help. If the ap-
plication is invoked with these options, then the program will print out whatever information
is stored in the help variable and then exit.

87

6.3 Task Manager

The task manager functionality is designed to parcel out tasks on a first come, first serve ba-
sis to processes in a parallel application. Each processor can request a task ID from the task
manager and based on the value it receives, it will execute a block of work corresponding
to the ID. The task manager guarantees that all IDs are sent out once and only once. The
unique feature of the task manager is that if the tasks take unequal amounts of time, then
processes with longer tasks will make fewer requests to the task manager than processes that
have relatively short tasks. This leads to an automatic dynamic load balancing of the applica-
tion that can substantially improve performance. The task manager also supports multi-level
parallelism and can be used in conjunction with the sub-communicators described above to
implement parallel tasks within a parallel application. An example of the use of communica-
tors and task managers to create a code that uses multiple levels of parallelism can be found
in the contingency analysis application that is part of the GridPACK distribution.

Task managers use the gridpack::parallel namespace. Task managers can be created
either on the world communicator or on a subcommunicator. Two constructors are available.

TaskManager(void)

TaskManager(Communicator comm)

The first constructor must be called on all processors in the system and creates a task manager
on the world communicator, the second is called on all processors within the communicator
comm. Once the task manager has been created, the number of tasks must be set. This can be
done with the function

void set(int ntask)

where the variable ntask corresponds to the total number of tasks to be performed. This
call is collective on all processes in the communicator and each process must use the same
value of ntask. The task IDs returned by the task manager will range from 0 to ntask-1.

Once the task manager has been created, task IDs can be retrieved from the task manager
using one of the functions

bool nextTask(int *next)

bool nextTask(Communicator &comm, int *next)

The first function is called on a single processor and returns the task ID in the variable next.
The second is called on the communicator comm by all processors in comm and returns the
same task ID on all processors (note that if all processors in comm called the first nextTask
function, each processor in comm would end up with a different task ID). The communicator

88

argument in the second nextTask call should be a subcommunicator relative to the com-
municator that was used to create the task manager. Both functions return true if the task
manager has not run out of tasks, otherwise they return false and the value of next is set to
-1.

The task manager also has a function

void printStats(void)

that can be used to print out information to standard out about how many tasks were as-
signed to each process.

A simple code fragment shows how communicators and task managers can be combined to
create an application exhibiting multi-level parallelism.

gridpack::parallel::Communicator world
int grp_size = 4;
gridpack::parallel::Communicator task_comm = world.divide(grp_size);
App app(task_comm);
gridpack::parallel::TaskManager taskmgr;
taskmgr.set(ntasks);
int task_id;
while(taskmgr.nextTask(task_comm, &task_id) {

app.execute(task_data[task_id]);
}

This code divides the world communicator into sub-communicators containing at most 4
processes. An application is created on each task communicator and a task manager is created
on the world group. The task manager is set to execute ntasks tasks and a while loop is
created to execute each task. Each call to nextTask returns the same value of task id
to the processors in task comm. This ID is used to index into an array task data of data
structures that contain the input data necessary to execute the task. The size of task data
corresponds to the value of ntasks. When the task manager runs out of tasks, the loop
terminates. Note that this structure does not guarantee that tasks are mapped to processors
in any fixed order. There is no guarantee that task 0 is executed on process 0 or that some
process will execute a given number of tasks. If one task takes significantly longer than other
tasks then it is likely that other processors will pick up work from the processors executing
the longer task. This balances the workload if each process is involved in multiple tasks.
Once the workload drops to 1 task per process, this advantage is lost.

6.4 Timers

Profiling applications is an important part of characterizing performance, identifying bot-
tlenecks and proposing remedies. Profiling in a parallel context is also extremely tricky.

89

Unbalanced applications can lead to incorrect conclusions about performance when load im-
balance in one part of the application appears as poor performance in another part of the
application. This occurs because the part of the application that appears slow has a global
operation that acts as an accumulation point for load imbalance. Nevertheless, the first step
in analyzing performance is to be able to time different parts of the code. GridPACK provides
a timer functionality that can help users do this. These modules are designed to do relatively
coarse-grained profiling, they should not be used to time the inside of computationally in-
tensive loops.

GridPACK contains two different types of timers. The first is a global timer that can be
used anywhere in the code and accumulates all results back to the same place for eventual
display. Users can get a copy of this timer from any point in the calculation. The second
timer is created locally and is designed to only time portions of the code. The second class of
timers was created to support task based parallelism where there was an interest in profiling
individual tasks instead of getting timing results averaged over all tasks. Both timers can be
found in the gridpack::utility namespace.

The CoarseTimer class represents a timer that is globally accessible from any point in the
code. A pointer to this timer can be obtained by calling the function

static CoarseTimer *instance()

A category within the timer corresponds to a set of things that are to be timed. A new category
in the timer can be created using the command

int createCategory(const std::string title)

This command creates a category that is labeled by the name in the string title. The func-
tion returns an integer handle that can be used in subsequent timing calls. For example,
suppose that all calls to function1 within a code need to be timed. The first step is to get
an instance of the timer and create the category “Function1”

gridpack::utility::CoarseTimer *timer =
gridpack::utilitity::CoarseTimer::instance();

int t_func1 = timer->createCategory("Function1");

This code gets a copy of the timer and returns an integer handle t func1 corresponding
to this category. If the category has already been created, then createCategory returns a
handle to the existing category, otherwise it adds the new category to the timer.

Time increments can be accumulated to this category using the functions

void start(const int idx)

void stop(const int idx)

90

The start command begins the timer for the category represented by the handle idx and
stop turns the timer off and accumulates the increment. At the end of the program, the
timing results for all categories can be printed out using the command

void dump(void) const

The results for each category are printed to standard out. An example of a portion of the
output from dump for a power flow code is shown below.

Timing statistics for: Total Application
Average time: 14.7864
Maximum time: 14.7864
Minimum time: 14.7863
RMS deviation: 0.0000

Timing statistics for: PTI Parser
Average time: 0.1553
Maximum time: 1.2420
Minimum time: 0.0000
RMS deviation: 0.4391

Timing statistics for: Partition
Average time: 2.8026
Maximum time: 2.9668
Minimum time: 1.7142
RMS deviation: 0.4398

Timing statistics for: Factory
Average time: 1.2424
Maximum time: 1.2540
Minimum time: 1.2336
RMS deviation: 0.0056

Timing statistics for: Bus Update
Average time: 0.0019
Maximum time: 0.0025
Minimum time: 0.0016
RMS deviation: 0.0003

For each category, the dump command prints out the average time spent in that category
across all processors, the minimum and maximum times spent on a single processor and the
RMS standard deviation from the mean across all processors. It is also possible to get more
detailed output from a single category. The commands

void dumpProfile(const int idx) const

void dumpProfile(const std::string title)

91

can both be used to print out how much time was spent in a single category across all pro-
cessors. The first command identifies the category through its integer handle, the second via
its name.

Some other timer commands also can be useful. The function

double currentTime()

returns the current time in seconds (if you want to do timing on your own). If you want
control profiling in different sections of the code the command

void configureTimer(bool flag)

can be used to turn timing off (flag = false) or on (flag = true). This can be used to
restrict timing to a particular section of code and can be used for debugging and performance
tuning.

In addition to the CoarseTimer class, there is a second class of timers called LocalTimer.
LocalTimer supports the same functionality as CoarseTimer but differs from the CoarseTimer
class in that LocalTimer has a conventional constructor. When an instance of a local timer
goes out of scope, the information associated with it is destroyed. Apart from this, all func-
tionality in LocalTimer is the same as CoarseTimer. The LocalTimer class was created
to profile individual tasks in applications such as contingency analysis. Each contingency
can be profiled separately and the results printed to a separate file. The only functions that
are different from the CoarseTimer functions are the functions that print out results. The
dumpProfile functions are not currently supported and the dump command has been mod-
ified to

void dump(boost::shared_ptr<ofstream> stream) const

This function requires a stream pointer that signifies which file the data is written to.

6.5 Exceptions

The math module has been implemented so that failures throw exceptions. These can be
caught by other parts of code and managed so that code does something more graceful than
simply crash when an error is encountered. For example, a calculation that fails because
the solver throws an exception might try to run again using a different solver. In a contin-
gency analysis calculation, a contingency that fails because the solver did not converge can be
marked as a failed calculation and the code can proceed to the next contingency. This allows
the code to evaluate all contingencies even if some do not converge. A solver exception can
be handled using the following construct

92

LinearSolver solver(*A);
// User code...
try {

solver.solve(*B,*X);
} catch (const gridpack::Exception e) {

// Do something to manage exception
}

If the solve command fails, it throws a gridpack::Exception that can then be managed
by the code. This could consist of simply exiting cleanly or the code could try and take
corrective action by using a different algorithm.

Exceptions can also be added to error conditions that are detected in user written code so
that the error can be picked up in some other part of the application and managed there.
Exceptions have two constructors that can be used in applications

Exception(const std::string msg)

Exception(const char* msg)

where msg is a text string describing the error that was encountered. This message can be
read later using the function

const char* what()

Exceptions are usually created in user code using the following syntax

if (...some_condition_is_violated...) {
throw gridpack::Exception("Describe error condition");

}

The error message can be printed out to standard out (or standard error) by catching the
exception and calling what

try {
// Some action

} catch (const gridpack::Exception e) {
std::cout << e.what() << std::endl;
// After printing error take some action

}

93

6.6 Hash Distribution Module

The hash distribution functionality provides a simple mechanism for quickly distributing
data associated with individual buses and branches to the processors that own those buses
and branches. This situation can come up in several contexts, particularly when network
data is distributed across multiple files. For example, the information on measurements
in the state estimation calculation is contained in a file that is distinct from the file that
holds the network configuration. The program starts by reading in the network configuration
and partitioning it. The program next reads in the measurements, but there is no simple
map between the measurements, each of which is associated with either a branch or a bus,
and the distributed network. Even if the measurements are read in before the network is
distributed, there is still no simple map between measurements and their corresponding
buses and branches, since some components may have no measurements associated with
them and other components may have multiple measurements. Moving this data to the right
processor and providing a simple way of mapping it to the correct bus or branch on that
processor is a non-trivial task.

The HashDistribution module is a templated class that assumes that the data that is to
be sent to the buses and branches are held in user-defined structs. It is contained in the
gridpack::hash distr namespace. The structs used for branches can be different from
the structs used for buses. If we designate the bus and branch structs by the names BusData
and BranchData then the constructor for the HashDistribution class has the form

HashDistribution<MyNetwork, BusData, BranchData>
(const boost::shared_ptr<MyNetwork> network)

Both the BusData and BranchData structs must be specified when creating a new HashDistribution
object, even if only bus or branch data is actually being used. If you are just using bus data
you can simply repeat the BusData type in the branch slot without causing any problems.
Similarly, you can also use BranchData in both slots if you are only interested in moving
data to branches.

The following command can be used to move bus data to the processors that actually hold
the corresponding buses

void distributeBusValues(std::vector<int> &keys,
std::vector<BusData> &values)

The integer array “keys” holds the original indices of the buses that the data in the vector
“values” is supposed to map to. The keys and values vectors should be the same and the
data in the values array at index n should be mapped to the bus indicated by the original
index stored at the same location in the keys array. This function is collective and must be
called on all processors. The amount of data on each processor does not need to be the same
and some processors, or even most of them, can have no data (it is still necessary to call the
distributeBusValues function across all processors even if some processors contain no

94

data). It also possible that the same original index can appear multiple times in the keys
array, i.e., multiple pieces of data can map to the same bus. On output, the values array
contains all the data objects that map to buses on that processor and the keys array contains
the local indices of the bus. This will include data that maps to ghost buses so a piece of data
may map to more than one processor in a distributed system.

An analogous command can be used to distribute data to branches. It has the form

void distributeBranchValues(std::vector<std::pair<int,int> > &keys,
std::vector<int> &branch_ids,
std::vector<BranchData> &values)

Branches are uniquely identified by the buses at each end of the branch, so the keys array in
this case is a vector consisting of index pairs representing the original indices of these buses.
The values array contains the data to be distributed to the branches and the branch ids
array contains the local index of the branch on output. Unlike the command to distribute bus
values, the keys array cannot be reused to store the destination index of the data. Similar to
buses, multiple data items can be mapped to the same branch.

The distribute values methods each have a generalization that allows users to distribute a
vector of values to individual buses and branches. These functions have the form

void distributeBusValues(std::vector<int> &keys,
std::vector<BusData*> &values, int nvals)

and

void distributeBranchValues(std::vector<std::pair<int,int> > &keys,
std::vector<int> &branch_ids,
std::vector<BranchValues*>, int nvals)

Instead of moving a single value struct for each bus or branch, these functions move a vector
of structs. Each struct must be the same size and contain nvals elements. These functions are
useful for assigning a time series of data to buses and branches.

6.7 String Utilities

At some point, users may want to develop their own parsers for reading in information in
external files. The StringUtils class is contained in the gridpack::utility namespace
and is designed to provide some useful string manipulation routines that can be used to
parse individual lines of a file. Other capabilities are available in standard C routines such
as strcmp and the Boost libraries also have many useful routines. The StringUtils class
is just a convenient container for different string manipulation methods; it has no internal
state.

95

Some basic routines for modifying strings so that they can be compared with other strings
are

void trim(std::string &str)

which can be used to remove white space at the beginning and end of a string. This function
will also convert all tabs and carriage returns to white space before trimming the white space
at the ends of the string. The functions

void toUpper(std::string &str)

void toLower(std::string &str)

can be used to convert all characters in the string to either upper or lower case.

Many devices in power grid applications are characterized by a one or two character alphanu-
meric string. It is useful to get these strings into a standard form so that they can be compared
with other strings. The function

std::string clean2Char(std::string &str)

returns a two character string that is right justified. It will also remove any quotes that may or
may not be around the original string. The strings C1, ‘C1’, “C1” and “ C1” will all return a
string containing the two characters C1. A single character string will return a two character
string with a blank as the first character.

The function

std:: string trimQuotes(std::string &string)

can be used to remove either single or double quotation marks from around a string and
remove any remaining white space at the beginning and end of the string.

Tokenizers can be used to break up a long string into individual elements. This is useful for
comma or blank delimitted strings representing a sequence of values. The function

std::vector<std::string> blankTokenizer(std::string &str)

will take a string in which individual elements are delimited by blank spaces and return
a vector in which each element is a separate string (token). This function treats anything
inside the original string that may be delimited by quotes as a single token, even if there are
additional blank spaces between the quotes. Thus, the string

1 5 "ATLANTA 001" 0.00056 1.02

96

is broken up into a vector containing the strings

1

5

"ATLANTA 001"

0.00056

1.02

Both single and double quotes can be used as delimiters for internal strings.

The function

std::vector<std::string> charTokenizer(std::string &str, const char *sep)

will break up a string using the character string sep as a delimiter. Thus, the string

1, 5, "ATLANTA 001", 0.00056, 1.02

would be broken up into a vector containing the strings

1

5

"ATLANTA 001"

0.00056

1.02

Note the presence of the leading white space in the last four tokens. This may need to be
removed using the trim function before using these strings in any comparisons.

Finally, the functions

bool getBool(std::string &str)
bool getBool(str)

can be used to convert a string to a bool value. These functions will convert the strings “True”,
“Yes”, “T”, “Y” and “1” to the bool value “true” and the strings “False”, “No”, “F”, “N” and
“0” to the bool value “false”. Both functions are case insensitive and will treat the strings
“TRUE”, “True” and “true”, etc. as equivalent.

97

6.8 Advanced Network Functionality

Most users will create networks by reading in an external configuration file using a parser
and let that function create and populate the network. Users that are interested in creat-
ing networks through another channel will need functionality in the BaseNetwork class
that was not described earlier. These can be used, for example, to write routines for cre-
ating networks from external configuration formats not currently supported in GridPACK.
The functions described below can be used to populate a network directly with buses and
branches.

When a network is originally created, it is just an empty object with no buses or branches
associated with it. Adding buses and branches directly to a networks is straightforward in
certain respects and complicated in others. Buses and branches can be added to the network
in any order and any process can add buses and branches without regard to topology. The
partition algorithm will sort out which buses and branches should be grouped together based
on connectivity, as well as adding whatever ghost buses and branches that are required to the
system. Buses are originally characterized by a unique index. This index does not need
to start at 0 or 1 and the indices do not need to form a contiguous sequence. The only
requirement is that each bus has a unique index. When using one of the GridPACK parsers
to read in an external configuration file, GridPACK internally assigns a second index, called
the global index, that starts at 0 and forms a continuous sequence that runs up to N-1, where
N is the number of unique buses in the network. Information written out by the serial IO
modules, for example, will be ordered based on the global index. To add a bus to the network
and to get all other module functions to work, the user must assign both these indices to the
bus. The function to add a new bus to the network is

void addBus(int idx);

The argument idx is the original index of the bus. The function to set the global index of the
bus is

bool setGlobalBusIndex(int idx, int gdx);

The argument idx is the local index of the bus in the network, the argument gdx is the
global index assigned by the user. This function will return false if the local index exceeds
the number of buses on the processor. The existing GridPACK parsers assign the original
index based on the index used in the configuration file and the global index based on the
position of the bus in the configuration file. For other sources, it may be necessary for users
to develop their own strategies for assigning indices.

Once the bus has been added, its properties can be modified using methods in the BaseBusComponent
class. Note that creating the bus simultaneously creates the associated DataCollection
object. This can be accessed using the network function

boost::shared_ptr<DataCollection> getBusData(int idx);

98

where idx is once again the local bus index. Once the data collection object is available,
properties can be added to it as described earlier.

New buses are added to the system with the assumption that they are local to the processor.
This means the “active” flag is originally set to true. The partitioner can then be used to
redistribute buses and branches and add ghost components. If the user wants to set their
own local/ghost status, then this can be done through the function

bool setActiveBus(int idx, bool flag);

The index idx is a local index, flag is the status of the bus (true for local buses, false for
ghost buses) and the function returns false if the local bus index does not correspond to a bus
on the process. The status of a bus as a reference bus can be set using the function

void setReferenceBus(int idx);

where idx is a local index.By default, buses are created as ordinary buses. Branches can be
added to the system using a similar set of functions. Note that there is no requirement that
branches be created on processes that contain either of the endpoint buses. In an extreme
case, the complete set of buses and branches can be created on separate processes. To add a
new branch to the system, the user must supply the original indices of the buses at each end
of the branch and a global index for each individual branch. Again, the global index runs
consecutively from 0 to M-1, where M is the total number of unique branches in the system.
A new branch is added to the network using the function

void addBranch(int idx1, int idx2);

where idx1 is the original index of the “from” bus and idx2 is the original index of the “to”
bus. The global index of the branch can be set with the function

bool setGlobalBranchIndex(int idx, int gdx);

where idx is the local index of the branch on the processor and gdx is the global index. As
in the case of buses, the complicated part of adding a branch to the network is to determine
a global index for the branch. When a branch is created, a DateCollection object for the
branch is created along and can be accessed using

boost::shared_ptr<DataCollection> getBranchData(int idx);

where idx is the local index of the branch. Once a pointer to the data collection object is
available, parameters can be added to it or modified as described earlier. The active status of
the branch can be set with

99

bool setActiveBranch(int idx, bool flag);

The arguments idx and flag are the local branch index and the branch status and the func-
tion returns false if the local index is not in the range of branches on the processor.

These functions are all that is needed to create a network from scratch or to write a parser
for a new network configuration file format. These are currently used in the PSS/E parser
classes to implement the network setup functionality.

6.9 Global Store

The GlobalStore class was created to make large amounts of data globally accessible to any
processor when replicating the data would be inefficient in terms of the amount of memory
required. The premise of the GlobalStore class is that processors generate vectors of data
and this data is added to a GlobalStore object. After all processors have completed adding
data, the data is “uploaded” to the GlobalStore object so that it is visible to all processors
in the system. Prior to the upload operation, the data is held locally on the processor that
generated it. The original motivation for creating this class was to save system state variables
that represent the results of individual simulations in a contingency analysis context. These
variables could then be used to initialize additional calculations.

The module GlobalStore is a templated class that is located in the gridpack::parallel
namespace. The GlobalStore constructor is

GlobalStore<data_type>(const gridpack::parallel::Communicator &comm)

The constructor takes a communicator as an argument so data in the GlobalStore object
will only be visible to processors in the communicator. It also takes the template argument
data type that can be any fixed-sized data type. This includes standard data types such as
int, float, double, etc. but could also represent user-defined structs.

Data can be added to the GlobalStore object using the command

void addVector(const int idx, const std::vector<data_type> &vec)

This command assumes that the user has some way of uniquely identifying each contributed
vector by an index idx. The indices do not have to be complete, i.e. not all indices in
some interval [0,. . . ,N-1] need to be added to the storage object, although large gaps between
contributed indices are potentially wasteful. The length of the vectors can differ for different
indices and there are also no restrictions on which processor contributes which index, so
contributions can be made in any order from any processor. The only restriction on indices
is that they are not used more than once, i.e. addVector is not call more than once on any
processor for a given index. This behavior maps fairly well to contingency calculations where

100

Figure 6.3: Schematic diagram of data storage in a GlobalStore object. Vectors can have any
length and some indices can be missing data.

the index represents the index of a particular contingency. The data layout in the GlobalStore
object is illustrated schematically in Figure 6.3.

Once the processors have completed adding vectors to the storage object, the data is still only
stored locally. To make it globally accessible, it is necessary to move it from local buffers to a
globally accessible data structure. This is accomplished by calling the function

void upload()

This function takes no arguments. After calling upload, it is no longer possible to continue
adding data to the storage object using the addVector function.

Once data has been uploaded to the storage object, any processor can retrieve the data asso-
ciated with a particular index using the function

void getVector(const int idx, std::vector<data_type> &vec)

This function retrieves the data corresponding to index idx from global storage and stores it
in a local vector. The getVector function can be called an arbitrary number of times after
the data has been uploaded. If no data is found, the return vector will have length zero.

One note about using the getVector function is worth mentioning. The implementation
of the GlobalStore class uses some Global Array calls that can potentially interfere with

101

MPI calls in a subsequent function call, resulting in the code hanging. If this occurs, it is
usually possible to prevent the hang by calling Communicator::sync on the communicator
that was used to define the GlobalStore object. This should be done after completing all
getVector calls but before making calls to other parallel functions.

6.10 Global Vector

The GlobalVector class was created to allow data to be stored in a linear array that is ac-
cessible from any processor. Each processor can upload a list of elements and their locations
to the GlobalVector. All processors can then access any portion of the vector. Processors
generate elements and assign an index to each element. Generally, the elements in each pro-
cessor will represent a contiguous block in the global vector, but other patterns are possible.
After uploading, a processor can copy any portion of the global vector, or the whole vector,
back to a local vector. This functionality is primarily used for constructing a data set that is
accessible to the entire system using contributions from individual processors.

The module GlobalVector is a templated class that is located in the gridpack::parallel
namespace. The GlobalVector constructor is

GlobalVector<data_type>(const gridpack::parallel::Communicator &comm)

The constructor takes a communicator as an argument so data in the GlobalVector object
will only be visible to processors in the communicator. Similar to the GlobalStore class,
GlobalVector also takes a template argument data type that can be any fixed-sized data
type. This includes standard data types such as int, float, double, etc. but could also
represent user-defined structs.

Data can be added to the GlobalVector object using the command

void addElements(std::vector<int> &idx,
const std::vector<data_type> &vec)

The vector idx contains the index locations of each of the elements in the vector vec. The
indices do not have to be complete, i.e. not all indices in some interval [0,. . . ,N-1] need to be
added to the storage object, although the data in those locations will be undefined and it is
up to the application to avoid accessing those locations. The length of the vectors can differ
for different processors and there are also no restrictions on which processor contributes
which set of indices, so contributions can be made in any order from any processor. The only
restriction on indices is that they are not used more than once.

Once the processors have completed adding elements to the storage object, the data is still
only stored locally. To make it globally accessible, it is necessary to move it from local buffers
to a globally accessible data structure. This is accomplished by calling the function

void upload()

102

This function takes no arguments. After calling upload, it is no longer possible to continue
adding data to the storage object using the addElement function.

After calling upload, any processor can retrieve data using the function

void getData(const std::vector<int> &idx,
std::vector<data_type> &vec)

This function retrieves the data corresponding to indices in idx from global storage and
stores it in a local vector. The getData function can be called an arbitrary number of times
after the data has been uploaded.

If all the data in the global vector is needed, then it can be recovered using the function

void getAllData(std::vector<data_type> &vec)

The return vector contains all values stored in the global vector. The number of elements can
be found by checking the size of vec.

Similar to the GlobalStore class, it is worth noting that the implementation of the GlobalVector
class uses some Global Array calls that can potentially interfere with MPI calls in a subse-
quent function call, resulting in the code hanging. If this occurs, it is usually possible to
prevent the hang by calling Communicator::sync on the communicator that was used to
define the GlobalVector object. This should be done after completing all getData calls
but before making calls to other parallel functions.

6.11 Bus Tables

The bus table module was created to allow applications to update the properties of buses
over multiple scenarios. This module is designed to read files of the form

11002 BL 0.0011 0.0009 0.0018 0.0023
11003 BL 0.2232 0.2113 0.2202 0.2317
11005 BL 0.1188 0.1076 0.1211 0.1197
11008 BL 0.0053 0.0045 0.0067 0.0072

The first column is a bus ID, the second column is a one- or two-character tag identifying
some device on the bus (e.g. a generator) and the remaining columns are properties of the
bus for different scenarios. The columns are delimited by white space. If there are N columns
of properties for the buses then the total number of columns in the file is N+2, where the ex-
tra two columns represent the bus indices and the device tags. The columns containing data
are indexed from 0 to N-1. If the properties apply to the bus as a whole and not some device
on the bus, then the tags can be ignored but some arbitrary one- or two-character string still

103

needs to be included in the file for the second column. The scenarios themselves can repre-
sent different times, different parameter sets, different loads etc. The properties are assumed
to be double precision values. Integer values can be used as properties by storing them as
double precision values and then casting them back to integers inside the application. Not
all buses need to be included in the table and in many cases, where a device is not present on
a bus, it is undesirable to require that each bus be represented.

The BusTable module is a templated class that takes the network type as a parameter. It is
located in the gridpack::bus table namespace. The constructor has the form

BusTable<MyNetwork>(const boost::shared_ptr<MyNetwork> network)

An external file with the format described above can be read in using the function

bool readTable(std::string filename)

where filename points to the appropriate file. This function will ingest the file and store
the contents in a distributed form that can be readily access by the application. This function
is collective and must be called by all processes over which the network is defined.

Accessing the data in the table can be accomplished using the following three functions

void getLocalIndices(std::vector<int> &indices)

void getTags(std::vector<std::string> &tags)

void getValues(int idx, std::vector<double> &values)

The first function returns a list of the local bus indices to which the data applies, the second
function returns a list of the corresponding device tags and the third function returns the
values from column idx in the table. After calling the functions, the data can be applied to
the appropriate buses using a loop of the form

MyBus *bus;
For (i=0; i<indices.size(); i++) {
bus = network->getBus(indices[i]).get();
bus->setProperty(tags[i], values[i]);

}

where setProperty is a user-defined function in the MyBus class that does something use-
ful with the data. This example assumes that the getLocalIndices and getTags func-
tions have already been called outside the loop.

The number of columns of properties can be accessed using the function

int getNumColumns()

This function is provided as a method for accessing the total number of scenarios directly
from the bus table input, instead of having to include it as a separate parameter.

104

Figure 6.4: Schematic diagram of StatBlock data layout. The entire array can be distributed
over multiple processors. Data for an entire contingency is added in a single operation.

6.12 Analysis

Calculations such as contingency analysis can generate enormous amounts of data that can
be further analyzed to discover instabilities or weak points in the system. The StatBlock class
described in this section is designed to provide users with a mechanism for storing all this
information in a distributed way and then allow them to perform some basic analysis routines
on the resulting data array. The basic idea is that each contingency calculation produces a
vector of results and this vector can be stored in a large array where one axis is an index that
labels the contingency and the other index labels the elements of the vector. Each contingency
must produce a vector of the same length. The vector may contain values such as the voltage
magnitude on each bus, the real or reactive power generation on each generator, the power
flow on each transmission line, or some similar quantity. The assumption is that each element
in the vector represents a property of some device on either a bus or a branch and this device
can be uniquely identified by a collection of indices that identify the bus or branch and a
second two character ID that identifies the device within the bus or branch.

For N contingencies, the contingency index runs between 0 and N, with 0 representing a base
case in which no contingency is present. A schematic figure of the data layout is shown in
Figure 6.4.

Once data has been added to the array, a number of different analyses can be performed on
it and the results written to a file. This array and the operations that can be used to analyze
data are included in the StatBlock data class. A complete description of this class and the

105

operations that are supported by it is given below.

This class has been used to extend the capabilities of the contingency analysis application un-
der src/applications/contingency analysis. The new output from this calculation
is described in the README.md file in this directory. The ca driver.cpp file contains exam-
ples of how to use this functionality in an application. The constructor for the StatBlock
class has the form

StatBlock(const Communicator &comm, int nrows, int ncols)

The Communictor represents the collection of processors over which the StatBlock array
is defined, the variable nrows is the total number of elements in each data vector that will
be added to the array and ncols is the number of columns in the array. For a contingency
calculation, ncols should be equal to N+1, where the extra column is for the base case. The
number of rows and columns are defined at the outset of the calculation, so they must be
evaluated before any other calculations are performed.

Data can be added to the array from any processor using the function

void addColumnValues(int idx, std::vector<double> vals,
std::vector<int> mask)

The value idx is the index of the column into which the vector will be placed. The length of
the vals and mask vectors needs to match the value of nrows used in the constructor. The
vals vector contains the actual values that are being placed in the StatBlock array. All
values are doubles. If an integer value is to be stored in the array, it should first be converted
to the corresponding double. The mask vector is a set of set of integer values that can be
used to control whether the corresponding value in the vals array is included in any of
the statistical operations in StatBlock. For example, a particular contingency calculation
might fail altogether and no values are recorded. In this case, the vals vector could be filled
with nrows values (these can be any number, but 0.0 is convenient) and the corresponding
mask array fill with nrows values of 0. For successful calculations, the mask array is filled
with 1s. Later calculations can then exclude the failed contingencies by only including values
with a corresponding mask value of 1 (or greater). This guarantees that some information is
extracted from the calculation, even if some contingencies failed. Furthermore, by excluding
these contingencies instead of setting their values to zero or some other dummy value, the
results are not biased by the dummy values. The addColumnValues can be called by any
processor.

In addition to the array values, several other vectors can be added to the array. These are used
either to label the output in useful ways or to control some of the analyses. The function

void addRowLabels(std::vector<int> indices,
std::vector<std::string> tags)

106

can be used to label data quantities derived from buses. The length of these arrays should
correspond to the value of nrows used in the constructor. For each row there is a correspond-
ing index in the indices vector and a 2-character tag in the tags vector that can be used to
uniquely identify the corresponding row quantity. For example, if each row represents the
real power for a generator, the the index for each row is the ID of the bus to which the gen-
erator is attached and the tag is the 2-character identifier for that generator within the bus.
This information will be printed out along with any statistical analyses that are performed
on the data. The addRowLabels function can be called from any processor. It should be
called at least once before doing any analyses. It can be called more than once, but the data
contained in multiple calls should be the same.

Similarly, for data associated with branches, there is the function

void addRowLabels(std::vector<int> idx1, std::vector<int> idx2,
std::vector<std::string> tags)

In this case, two vectors of indices, idx1 and idx2, are included for each row. These can
represent the IDs of the “from” and “to” buses for a branch and the tag can represent the
2-character identifier of a single transmission line within the branch. In general, only one set
of indices should be added to the StatBlock object, depending on whether the values are
derived from buses or branches.

Some additional information can be added to the StatBlock object. If the data quantity
should be bounded by some parameters, then these can be included in the output by adding
the bounds using the functions

void addRowMinValue(std::vector<double> min)

void addRowMaxValue(std::vector<double> max)

Again, the min and max vectors should both have nrows elements. Both of these vectors are
optional. If added to the StatBlock object, they will be included in some of the output.
This can simplify subsequent analysis and display. Like the addRowLabels function, these
functions can be called more than once, but they should contain the same data.

Once information has been added to the StatBlock object, some analyses can be performed
and the results written to a file by calling a few methods. The average value of a parameter
for each row and its RMS fluctuation can be printed to a file with the method

void writeMeanAndRMS(std::string filename, int mval=1, bool flag=true)

The parameter filename is the name of the file to which results are written, all values
with the corresponding mask value greater than or equal to mval will be included in the
calculation and flag can be set to false if it is not necessary to write out the 2-character
device ID to the file. For buses, the first column of output is the row index, the second

107

column is the bus ID, the third column is the device ID (optional) and the next three columns
are the average value of the parameter across each row, the RMS deviation with respect to the
average value, defined as

RMS =

 1
M − 1

 M∑
i=1

x2
i −Mx

2




1/2

where M is the total number of elements in the row that satisfy the criteria that the mask
value is greater than mval, and the RMS deviation with respect to the base case value

RMS =

 1
M − 1

M∑
i=1, i,b

(xi − xb)2


1/2

The results for branches have a similar format, except that the bus ID column is replaced by
two columns, one representing the bus ID for the “from” bus and the other representing the
bus ID of the “to” bus.

The minimum and maximum values for the parameter can be evaluated by calling

void writeMinAndMax(std::string filename, int mval=1, bool flag=true)

The arguments have the same interpretation as the writeMeanAndRMS function. This func-
tion will scan each row and determine the minimum and maximum value for the parameter
in that row, as well calculating the maximum and minimum deviation from the base case
and the contingency index at which the minimum and maximum values occur. If the allowed
minimum and maximum values for the parameter have been set using the addRowMinValue
and addRowMaxValue functions, these values will be printed as well. The first columns in
the file produced by this function follow the same rules as the writeMeanAndRMS func-
tion. Following the columns identifying the bus or branch and the device ID, the next three
columns of output contain the base case value for each row, the minimum value for each row
and the maximum value for each row. The next two columns are the deviation of the mini-
mum value from the base case value and the deviation of the maximum value from the base.
These five columns are always included in the file. The next two columns are optional and
only appear if the minimum and maximum allowed values are added to the StatBlock ob-
ject. If both values have been added, then the minimum value appears before the maximum
value. The last two columns are integers and represent the index of the contingency at which
the minimum and maximum values of the parameter occur.

The number of contingencies corresponding to a particular value of the mask variable for
each row can be evaluated with the function

void writeMaskValueCount(str::string filename,
int mval, bool flag=true)

108

This function evaluates the total number of times the mask value mval occurs in each row.
This can be used to identify the number of contingencies for which a device violates its op-
erating parameters. For example, if a contingency is successfully evaluated and there is no
violation of operating parameters then the mask value for that device and that contingency
is set equal to 1. If the contingency is successfully evaluated but there is a violation of oper-
ating parameters, the mask value is set to 2 (the mask value of 0 would still be reserved for
contingency calculations that fail completely). Calling the writeMaskValueCount method
with mval set to 2 would then reveal the total number of contingencies for each device for
which there was a violation. The format for the output file follows the previous pattern, the
first columns identify the bus or branch and the device ID and the last column is the number
of times the value mval occurs in the mask array for each row.

This functionality is still somewhat complicated so we will illustrate how to use it by show-
ing how to store the generator parameters from a contingency analysis calculation based
on power flow simulations of a network. This example is drawn from the existing contin-
gency analysis application released with GridPACK. This example starts by assuming that
the TaskManager is being used to distribute power flow simulations on different processor
groups within the main calculation. The data for generators is exported from the individual
buses using the serialWrite method base component class. For the buses, this has a section
that writes out the real and reactive power for each generator on the bus

} else if (!strcmp(signal,"gen_str") ||
!strcmp(signal,"gfail_str")) {

bool fail = false;
if (!strcmp(signal,"gfail_str")) fail = true;
char sbuf[128];
int slen = 0;
char *ptr = string;
for (int i=0; i<ngen; i++) {

if (!fail) {
:

// Evaluate real power p and reactive power q
// for each generator

:
} else {

p = 0.0;
q = 0.0;

}
sprint(sbuf,"%6d %s %20.12e %20.12e\n"

getOriginalIndex(),gid[i].c_str(),p,q);
}
int len = strlen(sbuf);
if (slen+len <= bufsize) {

sprint(ptr,"%s",sbuf);
slen +=len;

109

ptr += len;
}
if (slen > 0) return true;
return false;

} else if ...

This code snippet will return a string containing the real and reactive power of each gener-
ator on the bus. The string includes a large number of decimal places for the floating point
values to avoid large roundoff errors. The length of the string will vary with the number of
generators on the bus. The number of generators on the bus is given by the variable ngen
and the vector of strings gid contains the two character identifier tag for each generator. The
fail variable is designed to prevent the calculation from writing out strings that may cause
problems in other parts of the code if the powerflow calculation is unsuccessful.

The real and reactive power output for all generators can be gathered into a single vector
using the writeBusString method in the SerialBusIO class. This will gather the strings
being returned from each bus into a single vector of strings. The code for doing this is

int nsize = gen_strings.size();
std::vector<int> ids;
std::vector<std::string> gen_tags;
std::vector<double> pgen;
std::vector<double> qgen;
std::vector<mask>
StringUtils util;

if (pf_app.solve()) {
std::vector<std::string> gen_strings =

pf_app.writeBusString("gen_str");
for (int i=0; i<nsize; i++) {

std::vector<std::string> tokens =
util.blankTokenizer(gen_strings[i]);

int ngen = tokens.size();
for (int j=0; j<ngen; j++) {
ids.push_back(atoi(tokens[j*4].c_str()));
gen_tags.push_back(tokens[j*4+1]);
pgen.push_back(atof(tokens[j*4+2].c_str()));
qgen.push_back(atof(tokens[j*4+3].c_str()));
mask.push_back(1);

}
}

} else {
std::vector<std::string> gen_strings =

pf_app.writeBusString("gfail_str");

110

for (int i=0; i<nsize; i++) {
std::vector<std::string> tokens =

util.blankTokenizer(gen_strings[i]);
int ngen = tokens.size();
for (int j=0; j$<gen; j++) {

ids.push_back(atoi(tokens[j*4].c_str()));
gen_tags.push_back(tokens[j*4+1]);
pgen.push_back(0.0);
qgen.push_back(0.0);
mask.push_back(0);

}
}

}

The serialWrite method should return a string that writes out generator properties in
groups of four non-blank characters. The blankTokenizer utility will then return a vec-
tor of strings whose length is a multiple of four. If the powerflow calculation is successful,
the serialWrite method is called with the argument gen str to get the real and reactive
power values. If the calculation fails, it is still necessary to find out how many generators are
in the system and this can be done by calling serialWrite with the argument gfail str.
This returns the bus ID and two character tag for each generator without performing any
calculations or returning a value that might otherwise cause a segmentation fault or other
problem in the code. The loop over all strings is designed to construct the data vectors pgen
and qgen that can then be added to StatBlock objects. In addition, these loops also con-
truct the ids and gen tags arrays that can be used to set the row labels. The vectors only
have a non-zero length on rank 0 of whatever communicator the power flow calculation is
running on but it is not necessary to put a condition on the calculation to check for this.
The variable nsize will be set to zero on processes other than rank 0 and the loops will
be skipped. It is necessary, however, to check the rank when adding these vectors to the
StatBlock object.

The remaining issue is how to make use of these calculations in the context of a contingency
analysis calculation. The StatBlock object should be visible to all processors in the system,
so it must be created using the world communicator. Until a power flow calculation has been
run it will be difficult to determine the number of elements in a column, which is needed
by the constructor. As a result, it is easiest to create the StatBlock objects after the base
case power flow calculation has been run. In the example contingency analysis application
included with GridPACK, all task communicators run the base case power flow example.
After the base case has been run, all processors need to initialize the StatBlock object using
the same values for the number of elements and the number of contingencies. The number
of contingencies should already be known by all processors, since this is required by the task
manager. The number elements can be evaluated using

int ngen = pgen.size();
world.max(&ngen,1);

111

where world is a communicator on the world group. The vector pgen either has zero ele-
ments or the full set of generators, so taking the maximum value gives the correct number
for setting up the statistics array. This can be created using the line

StatBlock pgen_stats(world,ngen,ntasks+1);

The the number of contingencies being evaluated is ntasks and the extra increment of 1 is
for the base case. Only one processor needs to add the base case values and the row labels
to the pgen stats. Since these are available on process 0 on the world communicator, this
information can be added using the following code

if (world.rank() == 0) {
pgen_stats.addRowLabels(ids,gen_tags);
pgen_stats.addColumnValues(0,pgen,mask);

}

The individual tasks are similar. After completing the power flow calculation and construct-
ing the mask values vectors, the data can be added to the StatBlock array with the code

if (task_comm.rank() == 0) {
pgen_stats.addColumnValues(task_id+1,pgen,mask);
}

The labels only need to be added to pgen stats once, so they are not included in the condi-
tional. The conditional itself is for rank 0 on the task communicator, since at this point in the
calculation, the results from each task are different. The task id variable in this example is
assumed to be zero-based, so it is incremented by 1 to get the correct column. Once all tasks
(contingencies have been completed) the data can be written out using the commands

pgen_stats.writeMeanAndRMS("pgen.txt",1,true);
pgen_stats.writeMinAndMax("pgen_min_max.txt",1,true);

The first line generates a file containing the average value and standard deviations across all
successful calculations and the second line generates a file with the minimum and maximum
values across all successful calculations.

112

Chapter 7

Generalized Matrix-Vector Interface

The matrix-vector interface described earlier is suitable for problems where the indepen-
dent and dependent variables are both associated with buses. However, it does not work
for systems where some variables are associated with branches. This can occur in opti-
mization problems such as state estimation, where measurements are made on both buses
and branches. Every measurement contributes an equation to the state-estimation opti-
mization, which results in dependent variables associated with branches. To handle these
types of problems, a more general approach to creating matrices and vectors is required.
This is implemented via the GenMatVecInterface class. As illustrated in Figure 5, the
BaseComponent class directly inherits from this interface, along with the MatVecInterface.

Unlike the MatVecInterface class, there is no definitive way to map which elements are
contributed by a branch or bus, and the number of elements contributed by a branch or bus
does not reduce to simple blocks. Thus, the idea that buses and branches contribute simple
blocks of data must be abandoned. The GenMatVecInterface just assumes that buses and
branches contribute some number of equations (dependent variables) to the matrix and that
they also contribute some number of independent variables to the matrix. This is information
is embedded in the function calls

virtual int matrixNumRows(void)

virtual int matrixNumCols(void)

These two functions specify how many dependent variables (rows) and how many indepen-
dent variables (columns) are associated with a bus or branch. For the state estimation module
that is currently available in the GridPACK release, the dependent variables are the number
of measurements that are associated with the bus or branch and the independent variables
are the voltage magnitude and phase angle, which are only associated with buses. Thus, if the
state estimation Jacobian is being built, the matrixNumRows function returns the number of
measurements on each bus and branch. The matrixNumCols only returns a non-zero value
for buses since the branches have no independent variables. This value is generally 2, if the
bus has any measurements associated with it or is attached to a bus or branch that has mea-

113

surements, otherwise the value is 0. If the bus has measurements and is the reference bus,
then the function returns 1. These functions allow the generalized mappers to determine the
dimensions of the matrix (for state estimation, the Jacobian is not necessarily square). Unlike
the original matrix-vector interface, the user has to assign the row and column indices to
each matrix element. The actual values of these indices are evaluated by the mapper but it is
up to the user to take the row index for a particular dependent variable (measurement) and
the column index for a particular independent variable (voltage magnitude or phase angle)
and pair them with a matrix element (contribution to the Jacobian). The functions that are
used for this purpose are

virtual void matrixSetRowIndex(int irow, int idx)

virtual void matrixSetColIndex(int icol, int idx)

virtual int matrixGetRowIndex(int irow)

virtual int matrixGetColIndex(int icol)

The first two functions are used by the mapper to assign indices for each of the rows and
columns contributed by a component. The values of the indices need to be stored in the com-
ponent so that they can be accessed by other components when evaluating matrix elements.
Although these functions are only called by the mapper, they need to be implemented by the
user, since multiple matrices may be generated by the application. The variables irow and
icol refer to the list of rows and columns contributed by the component, while the index
idx is the global index for that row or column in the full matrix. The point of the first two
functions is to create a map between the local index of the row or column and the global
index of the corresponding row or column in the full matrix. This map is needed because
matrix elements constructed on one component may refer to rows or columns on other com-
ponents. The second pair of functions allow users to recover the global index from the local
index.

For example, the state estimation calculation needs to be able to build the Jacobian matrix
plus a diagonal matrix that represents the inverse of the uncertainties in all the measure-
ments. The state estimation components have two modes, Jacobian H and R inv for each
of these calculations. The matrixSetRowIndex method for the buses has the form

void SEBus::matrixSetRowIndex(int irow, int idx)
{

if (p_mode == Jacobian_H) {
if (irow < p_rowJidx.size()) {

p_rowJidx[irow] = idx;
} else {

p_rowJidx.push_back(idx);
}

114

} else if (p_mode == R_inv) {
if (irow < p_rowRidx.size()) {

p_rowRidx[irow] = idx;
} else {

p_rowRidx.push_back(idx);
}

}
}

The row indices for the Jacobian and R−1 are stored in two separate STL arrays p rowJidx
and p rowRidx. For the state estimation example, the number of rows (for both the Jacobian
and R−1) is equal to the number of measurements associated with the component. These
measurements are held in an internal list in some order. If the number of measurements on
the bus is M then the irow index will run from 0,..,M-1, with the irow index corresponding
to the irow element in the list of measurements. The independent variables are also assumed
to be ordered in some fashion. Again, for the state estimation example, the phase angle is
indexed by 0 and the voltage magnitude is indexed by 1.

The function for accessing the row indices is implemented as

int gridpack::state_estimation::SEBus::matrixGetRowIndex(int idx)
{
if (p_mode == Jacobian_H) {

return p_rowJidx[idx];
} else if (p_mode == R_inv) {

return p_rowRidx[idx];
}

}

Again, depending on the mode, this function will return different values and for this reason,
these functions need to be implemented by the user. They cannot be implemented as part
of the framework because the number of modes is application-specific and controlled by the
developer.

The functions that are used to actually evaluate matrix elements are

virtual int matrixNumValues(void) const

virtual void matrixGetValues(ComplexType *values,
int *rows, int *cols)

The first function returns the total number of matrix elements that will be evaluated by the
component. This is used inside the mapper to allocate arrays that hold matrix elements com-
ing from the components. The second function is used to evaluate actual matrix elements,
along with their row and column indices. The real-valued version of matrixGetValues

115

replaces ComplexType with double. This function is the one that will make use of the
matrixGetRowIndex and matrixGetColIndex functions. The evaluation of the matrixNumValues
function can be quite complicated. For the state estimation Jacobian matrix, the number of
matrix elements contributed by a component depends on the number of measurements as-
sociated with that component and the number of variables that couple to that measurement.
A measurement on a bus will usually contribute two values for the independent variables on
the bus, plus an additional two values for each bus that is attached to the center bus via a
branch. This number will be modified slightly if one of the buses in this group is a reference
bus. For branches, the number of matrix elements contributed by each measurement is ap-
proximately four, two elements for each bus at either end of the branch. This number may
drop if one of the buses is a reference bus.

The matrixGetValues function is used to evaluate each of the matrix elements. It also gets
the matrix indices for this element from the appropriate network component. The number
of matrix elements returned by this function must correspond to the number returned by the
matrixNumValues function. To see how the assignment of the indices works, we can look
at the matrix element of the Jacobian corresponding to the gradient of a real power injection
measurement Pi on bus i with respect to the phase angle on another bus j that is connected
to i via a single branch. The contribution to the Jacobian from this measurement is given by
the formula

∂Pi
∂θj

= ViVj(Gijsin
(
θi −θj

)
−Bijcos(θi −θj))

Suppose Pi is measurement k on the bus. Then the row index im for this matrix element can
be evaluated by calling the function

im = matrixGetRowIndex(k);

The column index is associated with the phase angle variable on the remote bus j. Assuming
that a pointer (bus j) to the remote bus is already available, then the column index jm for
this matrix element could be obtained by calling

jm = bus_j->matrixGetColIndex(0);

This function is called with the argument 0 since the dependent variables are always ordered
as phase angle (0) followed by voltage magnitude (1). The full list of Jacobian matrix ele-
ments can be obtained by looping over all measurements. For each bus measurement, there
are contributions from the dependent variables on each connected bus plus two contribu-
tions from the calling bus. Similarly, for each branch measurement there are approximately
four contributions coming from the independent variables associated with the buses at each
end of the branch. A simple counter variable can be used to make sure that the matrix ele-
ment value and the corresponding row and column indices stored in the same location of the
values, rows and cols arrays that are returned by the getMatrixValues function. The
GenMatVecInterface also includes functions for setting up vectors. These work in a very
similar way to the generalized matrix functions, so they will only be described briefly. The
two functions

116

virtual void vectorSetElementIndex(int ielem, int idx)

virtual void vectorGetElementIndices(int *idx)

can be used to set and retrieve vector indices. The index ielem is the local index within
the element while idx is the global index within the distributed vector. In this case it
is usually more convenient to get all indices associate with a component at once, so the
vectorGetElementIndices returns an array instead of a single value. The function

virtual int vectorNumElements() const

returns the number of vector elements contributed by a component and the function

virtual void vectorGetElementValues(ComplexType *values, int *idx)

returns a list of the values along with their global indices. For real vectors, replace the
ComplexType array with an array of type double. Again, the index value can be obtained
by first calling the vectorGetElementIndices function and using this to obtain the cor-
rect index for each element.

The vector interface includes one additional function that does not have a counterpart in the
matrix interface. This is the function

virtual void vectorSetElementValues(ComplexType *values)

This function can be used to push values from a solution vector back into the network
components. The values are ordered in the same way as the values in the corresponding
vectorGetElementValues call, so it is possible to unpack them and assign them to the
correct internal variables for each component. This function is analogous to the setValues
call in the regular MatVecInterface.

The functions in the GenMatVecInterface are invoked in the generalized mappers. These
reside in the GenMatrixMap and GenVectorMap classes. Like the standard mappers, these
classes are relatively simple and contain only a few methods. The GenMatrixMap class
consists of the constructor

GenMatrixMap<MyNetwork>(boost::shared_ptr<MyNetwork> network)

and the methods

boost::shared_ptr<gridpack::math::Matrix> mapToMatrix(void)

void mapToMatrix(boost::shared_ptr<gridpack::math::Matrix> matrix)

117

void mapToMatrix(gridpack::math::Matrix &matrix)

void overwriteMatrix(boost::shared_ptr<gridpack::math::Matrix> matrix)

void overwriteMatrix(gridpack::math::Matrix &matrix)

void incrementMatrix(boost::shared_ptr<gridpack::math::Matrix> matrix)

void incrementMatrix(gridpack::math::Matrix &matrix)

These functions all have the same behaviors as the analogous functions in the standard
FullMatrixMap. The GenVectorMap class has the constructor

GenVectorMap<MyNetwork>(boost::shared_ptr<MyNetwork> network)

and supports the methods

boost::shared_ptr<gridpack::math::Vector> mapToVector(void)

void mapToVector(boost::shared_ptr<gridpack::math::Vector> &vector)

void mapToVector(gridpack::math::Vector &vector)

These functions have the same interpretations as the analogous functions in the BusVectorMap
class. A new function is

mapToNetwork(boost::shared_ptr<gridpack::math::Vector> &vector)

which can be used to push data from a vector back into the network components (both buses
and branches).

7.1 Generalized Slab Mapper

The generalized slab mapper also uses functions in the generalized matrix-vector interface to
build dense matrices. These matrices are dense since they are generated by taking a typical
vector that corresponds to a set of variables on the buses and branches and replicating the
vector for different values of the variables. An example would be a matrix formed from a
time series of values for a set of variables on the buses and branches. One set of indices for
the matrix corresponds to the set of variables and the other set of indices corresponds to the
time series. In a certain sense, these matrices are “fat” vectors since instead of each variable
having only one value, they have multiple values. In general, slab matrices are not square.

118

The slab matrices are used in the Kalman filter application, but they may have applicability
elsewhere.

The slab mappers use additional functions from the GenMatVecInterface in order to con-
struct matrices. These functions are analogous to the functions for setting up vectors using
the GenVectorMap. The main difference is that instead of describing a list of values, the
functions describe a matrix block. The row dimension corresponds to a list of variables and
the column dimension describes the number of values taken by each variable. The column
dimension must be the same across all variables. The contribution to the matrix from each
network component is given by the function

void slabSize(int *rows, int *cols) const

The index for each row can be stored using the function

void slabSetRowIndex(int irow, int idx)

This function is called by the mapper and is analogous to the vectorSetElementIndex
function. For the slab matrices, there is no corresponding call for columns since the matrices
are dense and all rows have the same number of non-zero columns. The indices can be
retrieved by the function

void slabGetRowIndices(int *idx)

which is similar to the vectorGetElementIndices function.

119

Chapter 8

Optimization

GridPACK supports optimization via an interface that can be applied to bus and banch com-
ponents, as well as wrappers to some common optimization libraries. At present, there are no
example problems available for the optimization capability in GridPACK. The optimization
interface can be optionally inherited by the bus and branch classes. Unlike the other inter-
faces described in this document, this is not already included in the BaseBusComponent
and BaseBranchComponent classes. A component that wants to use the optimization in-
terface must explicitly inherit the interface when declaring the class. The optimization in-
terface is built up around the Expression class that is designed to provide some func-
tional programming capability to GridPACK. This functionality matches the interfaces to
many optimization packages. Additional classes needed by the optimization interface are
the Variable class and the Constraint class.

The Variable, Expression and Constraint classes are defined in the gridpack::optimization
namespace. A number of different types of variables inherit from Variable. This includes
RealVariable, IntegerVariable and BinaryVariable. Variables can take on dif-
ferent values and are designed to be used as parts of expressions. Expressions, in turn, can
be composed of variables and can also be composed of other expressions. This allows users
to build up quite complicated functions. An example of an expression is the following

typdef boost::shared_ptr<Variable> VarPtr;
typedef boost::shared_ptr<Expression> ExpPtr;

VarPtr x;
ExpPtr f;
x.reset(new RealVariable(0.0));
ExpPtr a(new RealConstant(5.0));
ExpPtr b(new RealConstant(-2.0));
f = a*x + b;

This code fragment defines the function f. Note that the last line is not an assignment in the
conventional sense; f does not represent the value computed from the current values of a, x,

120

and b but rather the operation of multiplying x by the constant value a and then adding the
constant value b to the result.

The functions in the optimization interface are all expressed in terms of the Expression
and Variable classes. Apart from simple constructors and destructors, there are only three
functions in this interface. The first of these returns a list of all variables associated with a
particular bus or branch.

std::vector<boost::shared_ptr<Variable> > getVariables()

Note that the variables returned by a network component can be used in expressions gener-
ated by other components but all variables in the problem should be returned by one compo-
nent somewhere in the network and by no more than one component. This function is called
by the optimizer to get a complete listing of variables. Ghost buses and branches do not call
this function.

The second function is used to determine the constraints in the system. A constraint is a
relation between two expressions. Allowed relations are <=, >= and ==. The function

std::vector<boost::shared_ptr<Constraint> > getLocalConstraints()

returns a list of constraints that are associated with a particular network component. This
function assumes that all returned constraints can be evaluated by the associated network
component. Constraints that are functions of variables on the component plus variables on
attached components fall into this category. Simple constraints defined as being numerical
bounds on the value of a variable can be incorporated into the variables definitions. The
Constraint class is designed to handle more complicated constraints that are functions of
one or more variables.

The final function in the optimization interface is

boost::share_ptr<Expression> getObjectiveFunction()

This function assumes that the objective function for the entire system is a sum of terms con-
tributed by each network component. Buses are branches that contribute nothing can return
a null pointer. These three functions can be used to define the complete optimization prob-
lem. The remainder of this section will expand on the different classes used to implement
these functions. The Variable class is used to define different types of variables. Vari-
ables can have real values, integer values or they can be binary swiches (0 and 1). All types
of variables are derived from the Variable base class. The RealVariable class has two
constructors

RealVariable(double val)

RealVariable(double val, double vmin, double vmax)

121

The first constructor initializes the variable with the value val, the second constructor ini-
tializes the variable with the value val and applies the constraints

val >= vmin
val <= vmax

to the variable. These constraints could also be applied using the Constraint class, but this
is obviously simpler, if applicable. The variable can be named using the method

void name(const std::string name)

The name of the variable can be recovered by the user with the function

std::string name() const

The name is an important property of the variable. It allows the application to identify two
variables as representing the same quantity if they are located on different network compo-
nents. This can happen with ghost buses and branches, where multiple copies of the same
bus or branch may exist in the system. To make sure that the application can identify vari-
ables from different copies of the same network components as being the same, the variables
defined within the copies must all have the same names. Conversely, variables from phys-
ically distinct network components need to have unique names that distinguish them from
each other.

All variables have an implicit upper and lower bound, even if this is not explicitly set using
the constructor. If only the initial value of the variable is set by the constructor, then the
upper and low bounds are set internally to machine limited values. The actual limits of the
variable, along with the initial value, can be recovered with the functions

double initial() const

double lowerBound() const

double upperBound() const

The IntegerVariable class is similar to the RealVariable class, except that only integer
values of the variable are allowed. It has the two constructors

IntegerVariable(int val)

IntegerVariable(int val, int vmin, int vmax)

The behavior of this class is similar to that of RealVariable, except all arguments are
integers. Similar to the RealVariable class, the Integer variable class supports the functions

122

void name(const std::string name)

std::string name() const

int initial() const

int lowerBound() const

int upperBound() const

Finally, the BinaryVariable class has the single constructor

BinaryVariable(int val)

The BinaryVariable class inherits from the IntegerVariable class and has lower and
upper bounds of 0 and 1. It can only take on these two values. Similer to the real and integer
variable classes, it has the methods

void name(const std::string name)

std::string name() const

int initial() const

int lowerBound() const

int upperBound() const

In this case the last two methods are redundant, since the return values will always be 0 and
1, respectively.

Variables can be used to create expressions. Expressions can consist of a single variable, a
constant, or variables and expressions combined together using unary or binary functions.
The expression class is designed to support the relatively simple sums over polynomials that
are encountered in power grid applications, but even with this limited scope, quite a few
complicated functions can be created with it. Expressions never use variables directly, they
are composed using variable pointers, so all variables in an expression should be instantiated
using a boost::share ptr<Variable> construct. Expressions themselves should also
be instantiated using a boost::share ptr<Expression> construct. To create a simple
quadratic polynomial requires the code

VarPtr x;
ExpPtr a(new RealConstant(1.0));
ExpPtr b(new RealConstant(-2.0));

123

ExpPtr c(new RealConstant(3.0));
x.reset(new RealVariable(0.0,-10.0,10.0));
ExpPtr x2 = xˆ2;
ExpPtr p = a+b*x+c*x2;

The exponentiation operation in the Expression class does not have the correct precedence
behavior so it is necessary to define the Expression x2 and then using it to define p. Ex-
pressions can be combined using the binary operations

ExpPtr+ExpPtr
ExpPtr-ExpPtr
ExpPtr*ExpPtr
ExpPtr/ExpPtr

Expressions can also be used in the functions

ExpPtrˆint
sin(ExpPtr)
cos(ExpPtr)

More complicated expressions can be built up from these simple operations. A constant
expression can be created using the constructs

ExpPtr var(new RealConstant(double));

ExpPtr var(new IntegerConstant(int));

These can then be used in other expressions as parameters.

Finally, constraints can be created using constructs such as

boost::shared_ptr<Constraint> const(ExpPtr1 relation constant);

where the character string relation can be

">="
"<="
"=="

and constant is a double or int value.

124

Chapter 9

Application Modules

Many of the example applications in GridPACK have been converted to modules that can be
called from other programs. These modules make it relatively simple to chain different types
of calculations together to form larger applications. An example is using power flow or state
estimation to initialize a dynamic simulation. The modules are designed to separat the major
phases of the calculation into calls so that users have some fine-grained control that allows
them to mix different applications together. In most cases, different options for setting up
calculations are provided so that once a network has been read in and partitioned, it is not
necessary to repeat this process when a new calculation is started based on the results of a
previous simulation.

Currently, three applications are available as modules within GridPACK. They include power
flow, state estimation, and dynamic simulation using the full Y-matrix. Each of these mod-
ules can be used to create a short, standalone application, but the goal is to enable users
to combine modules together in more complicated work flows. These modules can also be
used as a starting point for users to create their own applications by modifying the existing
code in the modules to create new functionality. Each of the modules is described in more
detail below. Example codes that use the modules to implement applications can be found
in the src/application directory. These include powerflow, state estimation, contingency
analysis and dynamic simulation. These directories also contain sample input networks and
input files. Options for different solvers can be found in these files.

9.1 Power Flow

The power flow module consists of a collection of function calls that can be used to set up
and run power flow calculations. Additional routines are designed to support different types
of contingency analysis. The power flow application class is PFAppModule and belongs to
the gridpack::powerflow namespace. The constructor and destructor for this class are
simple and only create the basis power flow object. In particular, the power flow network
must be created outside the power flow object and then assigned to the object when the

125

network configuration file is read in. This can be done with the call

void readNetwork(boost::shared_ptr<PFNetwork> &network,
Configuration *config)

The Configuation object should already be pointing to an open file containing a Powerflow
block. This block contains a networkConfiguration field that has the name of the PSS/E
format file containing the network information. The network configuration file is read di-
rectly from the input deck by the readNetwork method. The PFNetwork is defined in the
the gridpack.hpp header file. The configuration module is usually opened in the main
calling program and a pointer to the file can be passed through to power flow module. The
readNetwork routine also partitions the network.

Once the network has been read in, the internal indices and exchange buffers can be set up
by calling

void initialize()

The power flow application is now ready to be used. To solve the current configuration, the
calls

void solve()

void nl_solve()

can be used. The first call solves the system uses a hand coded Newton-Raphson iteration
loop to solve the system, the second call uses a non-linear solver to solve the power flow
equations. Both solvers can be controlled through solver options in the input file. The type of
linear solver used in the solve routine is controlled by the parameters in the LinearSolver
block, the non-linear solver is controlled by the properties in the NonlinearSolver block
Output from the power flow solution can be written to an output file or standard out using
one of the commands

void write()

void writeBus(const char* signal)

void writeBranch(const char* signal)

The first command writes out the real and imaginary parts of the complex power for the
branches and the voltage magnitude and phase angle for the buses. The second command
only writes out bus properties. If no argument is given, the command writes out the voltage
magnitude and phase angle for every bus. For buses, the argument “pq” writes out the real

126

and imaginary parts of the complex voltage and “record” writes out the type of bus, the
total active and reactive constant power loads, and the total active and reactive generator
power outputs. For branches, “flow” writes out the real and imaginary parts of the complex
power and “record” writes out the values of the resistance, reactance, charging and A, B, C
ratings for each line element.

Additional information can be written to standard out or a file using the command

void print(const char* buf)

which writes out the contents of the character array buf. This command can be called from
all processors, but only one processor actually writes out data.

The location of output can be controlled using the commands

void open(const char* filename)

void close()

If the write commands or print are used without calling open, then all output is directed
to standard out. If open is called, then the output is directed to the file specified in filename
until the close command is called, after which all output is again directed towards standard
out.

If the results of the power flow calculation are needed by another calculation, then the voltage
magnitude and phase angle of the bus and the real and imaginary parts of the complex power
for each generator can be stored in the DataCollection objects on each bus using the
command

void saveData()

If the network is then copied to a new type of network, this information is carried over to
the new network. The voltage magnitude and phase angle is stored in the DataCollection
variables BUS PF VMAG and BUS PF VANG and the generator parameters are stored in the
indexed variables GENERATOR PF PGEN[i] and GENERATOR PF QGEN[i], where the index
i runs over all generators on the bus.

The remaining methods in the PFAppModule class support different kinds of contingency
applications. Contingencies are defined using the data structure

struct Contingency
{

int p_type;
std::string p_name;
// Line contingencies

127

std::vector<int> p_from;
std::vector<int> p_to;
std::vector<std::string> p_ckt;
// Status of line before contingency
std::vector<bool> p_saveLineStatus;
// Generator contingencies
std::vector<int> p_busid;
std::vector<std::string> p_genid;
// Status of generator before contingency
std::vector<bool> p_saveGenStatus;

};

The variable p type corresponds to an enumerated type that can have the values Generator
and Branch. The variables p saveLinesStatus and p saveGenStatus are used inter-
nally and do not have to be set by the user. The remaining variables are used to describe the
lines and generators that may fail during a contingency event. These variables are all vectors,
since a single contingency could theoretically represent the failure of multiple elements. For
failures of type Branch, the variables p from and p to are the original indices of the “from”
and “to” bus that identify a branch and the variable p ckt is the 2 character identifier of the
individual transmission element. For failures of type Generator, p busid is the original
index of the bus and p genid is the 2 character identifier of the generator that fails. An
example of how to use this functionality is given in the contingency analysis application that
can be found under src/applications/contingency analysis. This is also a good
example of how to use modules.

Two calls

bool setContingency(Contingency &event)

bool unsetContingency(Contingency &event)

can be used to set or unset a contingency. The call unsetContingency should only be
called after calling setContingency and it should use the same event argument. After
calling the unsetContingency method, the network should have the same configuration
as before calling the setContingency method.

The remaining calls in PFAppModule can be used to determine the status of a network after
solving a configuration with a contingency. The functions

bool checkVoltageViolations(double Vmin, double Vmax)

bool checkVoltageViolations(int area, double Vmin, double Vmax)

can be used to check for a voltage violation anywhere in the system where Vmin and Vmax are
the minimum and maximum allowable voltage excursions (per unit). The second function

128

only checks for violations on buses with the specified value of area. These functions are true
if there are no voltage violations and return false if a violation is found on one or more buses.
It frequently turns out that many networks have voltage violations even in the absence of any
contingencies and it is often desirable to ignore these violations. This can be accomplished
using the function

void ignoreVoltageViolations(double Vmin, double Vmax)

If this function is called after solving the power flow system in the absence of any contingen-
cies, then buses that contain violations will be ignored in subsequent checks of violations.
These settings can be undone by calling

void clearVoltageViolations()

Line overload violations can be checked by calling one of the functions

bool checkLineOverloadViolations()

bool checkLineOverloadViolations(int area)

The limits on the line are contained in parameters read in from the network configuration
file so these functions have no arguments describing the line limits. The second function will
only check for violations on lines with the specified value of area. Like voltage violations,
branches that display line overload violations that are present even without contingencies
can be ignored in the checks by calling the function

void ignoreLineOverloadViolations()

after running a calculation on the system without contingencies. These settings can be
cleared using the function

void clearLineOverloadViolations()

Finally, the internal voltage variables that are used as the solution variables in the power flow
calculation can be reset to their original values (specified in the network configuration file)
by calling the function

void resetVoltages()

Again, this may be useful in contingency calculations where multiple calculations are run on
the same network and it is desirable that they all start with the same initial condition.

129

9.2 State Estimation Module

The state estimation module can be used to set up and run a state estimation calculation. It
does not have the extra functions that the power flow module contains for supporting con-
tingency analysis, so the interface is a bit smaller. In addition to a standard network config-
uration file, the state estimation calculation needs a second file consisting of measurements.
This file has the format

<Measurements>
<Measurement>

<Type>VM</Type>
<Bus>1</Bus>
<Value>1.0600</Value>
<Deviation>0.0050</Deviation>

</Measurement>
<Measurement>

<Type>PIJ</Type>
<FromBus>1</FromBus>
<ToBus>2</ToBus>
<CKT>BL</CKT>
<Value>1.5688</Value>
<Deviation>0.0100</Deviation>

</Measurement>
<Measurement>

<Type>QIJ</Type>
<FromBus>1</FromBus>
<ToBus>2</ToBus>
<CKT>BL</CKT>
<Values>-0.2040</Value>
<Deviation>0.0100</Deviation>

</Measurement>
<Measurement>

<Type>PI</Type>
<Bus>1</Bus>
<Value>2.3240</Value>
<Deviation>0.0100</Deviation>

</Measurement>
<Measurement>

<Type>QI</Type>
<Bus>1</Bus>
<Value>-0.1690</Value>
<Deviation>0.0100</Deviation>

</Measurement>
</Measurements>

130

for the five types of measurements VM, PIJ, QIJ, PI, and PJ. Measurements can appear on
any element of the network and multiple measurements are allowed on each element. The
state estimation module does not have any error checking ability to determine if there are
sufficient measurements to guarantee solvability, if not enough measurements are available
then the calculation will simply crash or fail to converge. The state estimation module is
represented by the SEAppModule class which is in the gridpack::state estimation
namespace. The gridpack.hpp file contains a definition for the state estimation network
SENetwork. After instantiating an SEAppModule object and a shared pointer to an SENetwork,
the state estimation calculation can read in an external network configuration file using the
command

void readNetwork(boost::shared_ptr<SENetwork> &network,
gridpack::utility::Configuration *config)

The Configuration object should already be pointing at an open file containing a State estimation
block. Inside the State estimation block there should be a networkConfiguration
field containing the name of the network configuration file. The file name is parsed directly
inside the readNetwork method and does not need to be handled by the user. Alternatively,
the SENetwork object may have already been cloned from an existing network and there-
fore there is no need to read in the configuration from an external file and partition it across
processors. In this case, the SEAppModule can be assigned the network using the command

void setNetwork(boost::shared_ptr<SENetwork> &network,
gridpack::utility::Configuration *config)

This function just assigns the existing network to an internal pointer, as well as a pointer to
the input file. It is much more efficient than reading in the network configuration file, if the
network already exists. This can occur when different types of calculations are being chained
together.

Once a network is in place and has been properly distributed, the measurements can be read
in by calling the function

void readMeasurements()

The name of the measurement file is in the input deck and a pointer to this file has already
been internally cached in the SEAppModule when the network was assigned. The measure-
ment file name is stored in the measurementList field within the State estimation
block.

The network object can be initialized and the exchange buffers set up by calling the

void initialize()

method followed by

131

void solve()

to obtain the solution to the system. Results can be written out to standard out using the
method

void write()

This function will write out the voltage magnitude and phase angle for each bus and the real
and imaginary parts of the reactive power for each branch. In addition, it will print out a
comparison of the calculated value and the original measured value for all measurements.

Finally, the results of the state estimation calculation can be saved to the DataCollection
object assigned to the buses by calling the

void saveData()

method. The voltage magnitude and phase angle are stored as the variables BUS SE VMAG
and BUS SE VANG and the generator parameters are stored as the indexed variables GENERATOR SE PGEN[i]
and GENERATOR SE QGEN[i], where i runs over the set of generators on the bus.

9.3 Dynamic Simulation Module using Full Y-Matrix

GridPACK supplies a dynamic simulation module that integrates the equations of motion
using an algorithm based on inversion of the full Y-matrix. This module has been designed
to enable the addition of generator models that extend beyond the classical generator. It also
supports exciters, governors, relays and dynamic loads. Models that are currently available
include Generators:

GENCLS
GENSAL
GENROU

Exciters:

EXDC1
ESST1A

Governors:

WSIEG1
WSHYGP

132

Relays:

LVSHBL
FRQTPAT
DISTR1

Dynamic Loads:

ACMTBLU1
IEEL
MOTORW
CIM6BL

The full Y-matrix implementation of dynamic simulation is represented by the DSFullApp
class and the DSFullNetwork, both of which reside in the gridpack::dynamic simulation
namespace. The dynamic simulation module uses an input deck of the form

<?xml version="1.0" encoding="utf-8"?>
<Configuration>

<Dynamic_simulation>
<networkConfiguration>IEEE_145.raw</networkConfiguration>
<generatorParameters>IEEE_145.dyr</generatorParameters>
<simulationTime>30</simulationTime>
<timeStep>0.005</timeStep>
<faultEvents>

<faultEvent>
<beginFault> 2.00</beginFault>
<endFault> 2.05</endFault>
<faultBranch>6 7</faultBranch>
<timeStep> 0.005</timeStep>

</faultEvent>
</faultEvents>
<generatorWatch>

<generator>
<busID> 60 </busID>
<generatorID> 1 </generatorID>
</generator>
<generator>
<busID> 112 </busID>
<generatorID> 1 </generatorID>
</generator>

</generatorWatch>
<generatorWatchFrequency> 1 </generatorWatchFrequency>
<generatorWatchFileName>gen_watch.csv</generatorWatchFileName>

133

<LinearMatrixSolver>
<PETScOptions>

-ksp_atol 1.0e-18
-ksp_rtol 1.0e-10
-ksp_monitor
-ksp_max_it 200
-ksp_view

</PETScOptions>
</LinearMatrixSolver>

</Dynamic_simulation>
</Configuration>

The input for dynamic simulation module is contained in the Dynamic simulation block.
Two features are important, the blocks describing faults and the blocks describing mon-
itored generators. Faults are described in the faultEvents block. The code currently
only handles faults on branches. Inside the faultEvents block are individual faults, de-
scribed by a faultEvent block. Multiple faultEvent blocks can be contained within the
faultEvents block. As will be described below, it is possible for the faults to be listed in a
separate file. This can be convenient for describing a task-based calculation that may contain
a lot of faults. The parameters describing the fault include the time (in seconds) that the fault
is initiated, the time that it is terminated, the timestep used while integrating the fault and
the indices of the two buses at either end of the fault branch.

When running a dynamic simulation, it is generally desirable to monitor the behavior of a
few generators in the system and this can be done by setting generator watch parameters. The
generatorWatch block specifies which generators are to be monitored. Each generator is
described within a generator block that contains the index of the bus that the generator is
located on and the character string ID of the generator. The results of monitoring the gener-
ator are written to the file listed in the generatorWatchFileName field and the frequency
for storing generator parameters in this file is set in the generatorWatchFrequency field.
This parameter describes the time step interval for writing results (an integer), not the actual
time interval.

Before using the dynamic simulation module, a network needs to be instantiated outside
the DSFullApp and then passed into the module. If the module itself is going to read and
partition a network, then it should use the function

void readNetwork(boost::shared_ptr<DSFullNetwork> &network,
gridpack::utility::Configuration *config,
const char *otherfile = NULL)

The Configuration object should already be pointing to an input deck with a Dynamic simulation
block that specifies the network configuration file. The optional otherfile argument in
readNetwork can be used to overwrite the networkConfiguration field in the input
deck with a different filename. This capability has proven useful in some contingency appli-
cations where multiple PSS/E files need to be read.

134

Alternatively, a distributed network may already exist (it may have been cloned from another
calculation). In that case, the function

void setNetwork(boost::shared_ptr<DSFullNetwork> &network,
gridpack::utility::Configuration *config)

can be used to assign an internal pointer to the network. Again, the Configuration object
should already be pointing to an input file.

Additional generator parameters can be assigned to the generators by calling the function

void readGenerators()

This function opens the file specified in the generatorParameters field in the input file
and reads the additional generator parameters. The file is assumed to correspond to the
PSS/E .dyr format. The devices listed at the start of this section can be included in this file.

After setting up the network and reading in generator parameters, the module can be initial-
ized by calling

void initialize()

This sets up internal parameters and initializes the network so that it is ready for calculations.

A list of faults can be generated from the input file by calling

std::vector<gridpack::dynamic_simulation::DSFullBranch::Event>
getFaults(gridpack::utility::Configuration::CursorPtr cursor)

If the cursor variable is pointed at a Dynamic simulation block inside the input file (as in
the example input block above) then this function will return a list of faults from the input
deck. However, it is also possible that the cursor could be pointed to the contents of another
file. As long as it is pointed to a block containing a faultEvents block, this function will
return a list of faults. This allows users to declare a large list of faults in a separate file and
then access the list by including the external file name as a parameter in the input deck of
their application.

The monitoring of generators specified in the input deck can be set up by calling

void setGeneratorWatch()

This will guarantee that all generators specified in the input deck are monitored and that the
results are written out to the specified file. If this function is not called, the generator watch
parameters in the input file are ignored. Simulations can be run using the function

135

void solve(gridpack::dynamic_simulation::DSFullBranch::Event fault)

Some additional results can be written at the end of the simulation using the function

void write(const char *signal)

The signal parameter can be used to control which results are written out. This function
currently does not support any output. All output results are controlled using the generator
watch parameters.

Some additional functions can be used to control where output generated during the course
of a simulation is directed. The following two functions can be used to direct output from
the write function to a file

void open(const char* filename)

void close()

The function

void print(const char* buf)

can be used to print out a string to standard out. If the open function has been used to
open a file, then the output is directed to the file. This function is equivalent to the header
convenience function in the serial IO classes. Additional functions can be used to stored data
from the generator watch variables. These can be used to save the time series data from a
simulation in a collection of vectors. The application can then use these series in whatever
way it wants. There are four functions that enable this capility. The first is

void saveTimeSeries(bool flag)

This function must be called with the argument set to “true” in order for the time series data
to be saved. Otherwise it is only written to output and no data is saved between time steps.
The second function can be called after the solve function has been called and the simulation
is completed. It returns a vector of time series

std::vector<strd::vector<double> > getGeneratorTimeSeries()

This function returns a vector containing the time series data for all the watched genera-
tors located on this processor (generators on buses owned by neighboring processors are not
included).

To find out which variables are actually in the list returned by getGeneratorTimeSeries
requires the remaining two functions. The function

136

void getListWatchedGenerators(std::vector<int> &bus_ids,
std::vector<std::string> &gen_ids)

returns a list of the bus IDs and 2-character generator tags for all monitored generators. In
particular, it assigns and ordering to these generators that is used by function

std::vector<int> getTimeSeriesMap()

This function returns a map between the elements in the list of time series returned by
getGeneratorTimeSeries and the generators that those time series correspond to. For
example suppose the time series list has four elements in it that happen to correspond to two
generators on processor. There are a total of six monitored generators in the system. The
vectors returned by getListWatchedGenerators have length six, the vector returned by
getTimeSeriesMap has length four. The value in the map vector for the corresponding
element in the time series vector points to the location of the bus index and generator tag for
that time series variable in the lists returned by getListWatchedGenerators. This still
leaves it up to the user to identify the actual variable being watched within the generator. In
this example there are four variables that are watched but only two generators. Currently, the
generator watch capability only watches the rotor speed and rotor angle of each generator.
The first time series is the speed and the second time series is the angle.

9.4 Kalman Filter

GridPACK includes a Kalman filter module that can be used for dynamic state estimation.
The Kalman filter relies heavily on parallel matrix multiplies that are not currently very high
performing, so users will probably find this module too slow for large grids. However, we
include it for users interested in exploring the use of Kalman filters in smaller applications.
We hope to improve performance in future releases.

The current implementation of the Kalman filter only supports classical generators. These
are described in a PSS/E .dyr formatted file. The network itself can be described using a
standard PSS/E .raw file. In addition to the .raw and .dyr files, users need to supply times
series data for the voltage magnitude and voltage phase angle on all buses. These are stored
as .csv files. The format for both the voltage magnitude and phase angle files is

t-3001, Bus-1, Bus-2,{\dots}
0.0, -0.001, -0.135,{\dots}
0.1, -0.001, -0.135,{\dots}
0.2, -0.001, -0.135,{\dots}
:

All entries on the same lines are separated by commas. The first row contains the name of all
columns. The first column is time and has a name of the form t-xxx,where xxx is an integer

137

representing the number of time steps in the file. The number of rows in the file corresponds
to xxx+1 (the extra row is the first line with the column names). The number of columns is
equal to the number of buses in the file plus one (the extra column contains the times). After
the first column, the remaining names are all of the form Bus-xxx, where xxx is an integer
representing the bus ID. The remaining rows contain the time of the measurement and the
value for the measurement on each of the buses.

The input file for the Kalman filter module used both for a dynamic simulation as well as
input that is unique to the Kalman filter module. The dynamic simulation parameters that
are used include

<Dynamic_simulation>
<simulationTime>3</simulationTime>
<timeStep>0.01</timeStep>
<!-- = 1 Fault Event is known;

= 0 Fault event is unknown, switch is skipped.
-->
<KnownFault> 1 </KnownFault>
<TimeOffset> 0 </TimeOffset> <!--skip initial measurement data -->
<faultEvents>

<faultEvent>
<beginFault> 1 </beginFault>
<endFault> 1.1</endFault>
<faultBranch>6 7</faultBranch>
<timeStep> 0.01</timeStep>

</faultEvent>
</faultEvents>

</Dynamic_simulation>

The fault used in the simulation is specified using the same faultEvents block as for dy-
namic simulation. If the Kalman filter simulation is not being initialized from another cal-
culation, the networkConfiguration field can also be added. The KnowFault and Time-
Offset parameters are unique to the Kalman filter application and control whether the fault
is considered to be a know event and whether all the time series data should be used in the
analysis.

The Kalman filter block consists of the fields

<Kalman_filter<
<KalmanAngData>IEEE14_Kalman_input_ang.csv</KalmanAngData>
<KalmanMagData>IEEE14_Kalman_input_mag.csv</KalmanMagData>
<generatorParameters>IEEE14_classicGen.dyr</generatorParameters>
<ensembleSize>21</ensembleSize>
<gaussianWidth>1e-2</gaussianWidth>
<noiseScale>1e-4</noiseScale>

138

<randomSeed>931316785</randomSeed>
<maxSteps>3000</maxSteps>
<LinearSolver>

<PETScOptions>
-ksp_view
-ksp_type richardson
-pc_type lu
-pc_factor_mat_solver_package superlu_dist
-ksp_max_it 1

</PETScOptions>
</LinearSolver>

</Kalman_filter>

The KalmanAngData and KalmanMagData fields specify the locations of the files contain-
ing the time series data for the voltage magnitude and phase angle. The .dyr file containing
the generator parameters (classical generators only) is specified in the generatorParameters
field. Additional Kalman filter parameters include

1. ensembleSize: The number of random ensembles generated for the Kalman filter
calculation.

2. gaussianWidth:

3. noiseScale:

4. randomSeed: This is an arbitrary integer used to seed the GridPACK random number
generator.

5. maxSteps: this parameter can be used to control the number of steps simulated. If the
number of steps is smaller than the number of steps in the time series data files, then
only the number of steps set by maxSteps will be simulated.

The Kalman filter also needs to make use of linear solvers and the type of solver and its
parameters can be specified in this block as well.

The Kalman filter module is represented by the KalmanApp class and the KalmanNetwork,
both of which are in the gridpack::kalman filter namespace. At present there are only
a few functions in this class, more will probably be added as we develop this module further.
Apart from the constructor and destructor, the KalmanApp class has a method for reading
in a network from a PSS/E formatted file and partitioning it among processors

void readNetwork(boost::shared_ptr<KalmanNetwork> &network,
gridpack::utility::Configuration *config)

If the network already exists, then it can be applied to an existing KalmanApp object using
the function

139

void readNetwork(boost::shared_ptr<KalmanNetwork> &network,
gridpack::utility::Configuration *config)

The application can be initialized by calling the function

void initialize()

This function will read in the files containing the time series data for the voltage magnitude
and phase angles and will set update configure the calculation based on the parameters in
the input file. The simulation is run and output generated using

void solve()

The values of the rotor speed and rotor angle for all generators will be written to the files
omega.dat and delta.dat after this simulation is run.

140

Chapter 10

GridPACK Examples

This section will expand on the discussion of the power flow application and provide ad-
ditional examples of how GridPACK can be used to develop applications. Two of these are
simple applications that have been provided in GridPACK that illustrate how the code works,
without necessarily getting involved in the details that would be needed to implement a re-
alistic power grid model. The third example is an in-depth discussion of a simplified version
of the contingency analysis application. This provides a good illustration of how to create
multi-task simulations and also an example of how to use modules. A more complicated
version of contingency analysis is available in the application area. The main difference be-
tween the two is that the contingency analysis simulation in the application area performs
much more analysis on the results of the individual contingencies.

All the codes discussed here can be found under the top-level GridPACK directory in src/applications/examples.
The first of the simple examples consists of a “hello world” program that writes a message
from a small 10 x 10 square grid of buses and branches. The second example calculates the
electric current flow through a square grid of resistors. Both examples are designed to show
how the basic features of the GridPACK framework interact with each other. More compli-
cated examples for realistic models can be found in the modules and components directories
under applications. Athough these examples represent more complicated bus and branch
models, they contain many of the same characteristics that can be found in the hello world
and resistor grid programs.

A simplified contingency analysis example is also included that illustrates a great many of the
advanced features of GridPACK in a fairly short code. These features include creating your
own parser, using subcommunicators and the task manager, using modules and controlling
output.

10.1 “Hello World”

The “Hello world” program is a famous example problem from C programming. Many other
packages have adopted the spirit of this program, if not the specifics, to describe the simplest

141

non-trivial program that can be written using the package. In this section, a program that
prints out a message from each of the buses and branches on a small grid is described. This
application requires the user to define branch and bus classes, create a network class and
implement a top level application. The source code for this example can be found in the
hello world directory.

We start by implementing the load and serialWrite methods in the BaseComponent
class for the bus and branch classes of our “Hello world” application. The bus and branch
classes for this application are called HWBus and HWBranch and have the header file

#ifndef _hw_components_h_
#define _hw_components_h_

#include "boost/smart_ptr/shared_ptr.hpp"
#include "gridpack/include/gridpack.hpp"

namespace gridpack {
namespace hello_world {
class HWBus

: public gridpack::component::BaseBusComponent {

public:

HWBus(); // Constructor
˜HWBus() // Destructor

void load(const boost:shared_ptr
<gridpack::component::DataCollection> &data);

bool serialWrite(char *string, const int bufsize,
const char *signal = NULL);

private:

int p_original_idx;

friend class boost::serialization::access;
template<class Archive> void serialize(Archive &ar,

const unsigned int version)
{

ar & boost::serialization::base_object
<gridpack::component::BaseBusComponent>(*this)
& p_original_idx;

}
};

142

class HWBranch
: public gridpack::component::BaseBranchComponent {

public:

HWBranch(); //Constructor
˜HWBranch(); //Destructor

void load(const boost::shared_ptr
<gridpack::component::DataCollection> &data);

bool serialWrite(char *string, const int bufsize,
const char *signal = NULL);

private:

int p_original_idx1;
int p_original_idx2;

friend class boost::serialization::access;
template<class Archive> void serialize(Archive & ar,

const unsigned int version)
{

ar & boost::serialization::base_object
<gridpack::component::BaseBranchComponent>(*this)
& p_original_idx1
& p_original_idx2;

}
};

typedef network::BaseNetwork<HWBus, HWBranch > HWNetwork;

} // hello_world
} // gridpack
#endif

The HWBus class has one private member, p original idx, which is the index of the bus
in the network configuration file. Similarly, the HWBranch class has two private members,
p original idx1 and p original idx2, representing the buses at the “from” and “to”
ends of the branch. The name of the file containing this code is hw components.hpp.
The first two lines of the file are the standard preprocessor protection flags that guaran-
tee that any declarations in this file only appear in another file a single time. The next two
lines include the Boost smart pointer header file and the header files from the GridPACK

143

framework. The next two lines declare that all functions and classes in the file are in the
gridpack::hello world namespace. The use of namespaces is up to the user and other
choices are possible. The declaration of the HWBus class inherits from the BaseBusComponent
class so all functions in the BaseBusComponent class are available to HWBus. BaseBusComponent
also provides some virtual functions, along with their default implementations, that can be
overwritten in HWBus. Two of these are the load and serialWrite functions. Only these
functions are used in the “Hello world” application, the remaining functions in the bases
classes are represented by the default implementations. Inside HWBus are declarations for
the constructor, destructor, load and serialWrite functions. These will be implemented
in the hw components.cpp file.

The final component in HWBus is the implementation of the serialize method. This method is
used when copying the class from one processor to another and allows the program to move
all the data associated with a particular instance of HWBus to another processor. The friend
declaration means that HWBus has access to protected methods and data in boost::serialization::access
and the templated serialization function is used to declare all internal data members that
need to be transferred with the HWBus instance if it is moved from on processor to another.
These elements include whatever base class HWBus may be derived from, which is repre-
sented by the element

boost::serialization::base_object<gridpack::component
::BaseBusComponent>(*this)

The remaining data element is p original idx. The variable ar of type Archive is ap-
pended to using the operator &. In this case the data appended to ar is any serialized data
coming from the base class and the variable p original idx. The serialization function is
recursive, so including the base class is enough to guarantee that any variables beneath that
are also included in the serialization.

The declaration for HWBranch is very similar. The only major difference is that there are
two private variables representing the buses at either end of the branch and these must both
be included in the serialize function. The bottom of the file contains a typedef decla-
ration for a network using HWBus and HWBranch for it bus and branch classes. This is a
convenience and makes it easier to define other functions and classes in the application.

The hw components.cpp file contains the actual implementation of the functions declared
in hw components.hpp. The declarations for STL vectors and iostreams and the hw components.hpp
file are included at the top of the file so that all functions in the class are defined. For HWBus,
the constructor and destructor are trivial and are given by

gridpack::hello_world::HWBus::HWBus()}}}
{

p_original_idx = 0;
}

gridpack::hello_world::HWBus::˜HWBus()

144

{
}

The load function is more interesting and is designed to transfer data that was read in from
the network configuration file to the internal parameters of the bus. In this case, there is
only one internal parameter, so load is fairly simple. The bus ID is stored in the variable
BUS NUMBER, so the load implemention is

void gridpack::hello_world::HWBus::load(const
boost::shared_ptr<gridpack::component::DataCollection> &data)

{
data->getValue(BUS_NUMBER,\&p_original_idx);}}}

}

All the parameters associated with the bus that came from the network configuration file are
stored in the data DataCollection object, so the getValue statement is used to get the
value from data and assign it to p original index. A completely listing of all variables
that might be found in a DataCollection object can be found in the dictionary.hpp file lo-
cated in the src/parser directory. The serialWrite function returns a string with a mes-
sage from the bus if called by some other program (in this case an instance of SerialBusIO).
For “Hello world”, the bus reports back the bus index using the function

bool gridpack::hello_world::HWBus::serialWrite(char *string,
const int bufsize, const char *signal)

{
sprintf(string,"Hello world from bus %d\n",p_original_idx);
return true;

}

For this case, both the incoming variables bufsize and signal are ignored since “Hello
world” only has one type of output and it is guaranteed to fit in the buffer, but both variables
could be used in more complicated implementations. The bufsize variable can be used to
make sure that the string does not exceed an internal buffer size and signal can by used
to produce different outputs depending on what the actual contents of signal are. For the
serialWrite implementations described for this application, guaranteeing that the strings
fit inside the buffer is straightforward, since all strings are the same size. For real applica-
tions, this may not be the case. For example, when printing out generator properties, the
strings from buses can vary in size because the number of generators on a bus can vary. The
implementations of the functions in HWBranch are similar. The constructor and destructor
are

gridpack::hello_world::HWBranch::HWBranch(void)}}}
{

145

p_original_idx1 = 0;
p_original_idx2 = 0;

}

gridpack::hello_world::HWBranch::˜HWBranch(void)
{
}

The load function is given by

void gridpack::hello_world::HWBranch::load(
const boost::shared_ptr<gridpack::component::DataCollection> &data)

{
data->getValue(BRANCH_FROMBUS,&p_original_idx1);
data->getValue(BRANCH_TOBUS,&p_original_idx2);

}

This is similar to the implementation of the load function for HWBus, except that the inter-
nal data members are mapped to the values of the BRANCH FROMBUS and BRANCH TOBUS
elements of the data collection object. The serialWrite function is

bool gridpack::hello_world::HWBranch::serialWrite(char *string,
const int bufsize, const char *signal)

{
sprintf(string,

"Hello world from the branch connecting bus %d to bus %d\n",
p_original_idx1, p_original_idx2);

return true;
}

Every branch prints out a string describing the branch in terms of the bus IDs at each end of
the branch. Again, the incoming bufsize and signal variables are ignored in this case and it is
assumed that the buffer size assigned to the SerialBranchIO object when it is instantiated
is sufficiently large to guarantee that all strings from every branch will fit.

The implementation of the factory class for the “Hello world” application is straightforward,
since the class only needs the functionality in the BaseFactory class. The complete class is
given by

#ifndef _hw_factory_h_
#define _hw_factory_h_

#include "boost/smart_ptr/shared_ptr.hpp"
#include "gridpack/include/gridpack.hpp"

146

#include "hw_components.hpp"

namespace gridpack {
namespace hello_world {

class HWFactory
: public gridpack::factory::BaseFactory<HWNetwork> {

public:

HWFactory(boost::shared_ptr<HWNetwork> network)
: gridpack::factory::BaseFactory<HWNetwork>(network) {}

˜HWFactory() {}

};
} // hello_world
} // gridpack

#endif

This class is defined in the hw factory.hpp file. Because the class is so simple, the complete
class declaration is given in hw factory.hpp and there is no corresponding .cpp file. In
addition to including the gridpack.hpp header, this file also includes hw components.hpp,
so it has the definitions of HWNetwork. The HWFactory constructor is used to initialize the
underlying BaseFactory object with the network that is passed in through the argument
list. That is the only functionality that is defined in this class.

The application class that is built on top of the component and factory classes consists of the
class

#ifndef _hw_app_h_
#define _hw_app_h_

namespace gridpack {
namespace hello_world {

class HWApp
{

public:

HWApp(void);
˜HWApp(void);
void execute(int argc, char** argv);

147

};
} // hello_world
} // gridpack
#endif

This class is declared in hw app.hpp. Apart from the constructor and destructor, there is
only the function execute, which is used to actually run the program. This takes the standard
argc and argv variables as arguments, which could be passed in from the top level calling
program.

The implementation of these functions are relatively simple, most of the complexity for this
program is in defining the bus and branch classes. The implementations are defined in the
file hw app.cpp

#include <iostream>
#include "boost/smart_ptr/shared_ptr.hpp"

#include "gridpack/include/gridpack.hpp"
#include "hw_app.hpp"
#include "hw_factory.hpp"

gridpack::hello_world::HWApp::HWApp(void)
{
}

gridpack::hello_world::HWApp::˜HWApp(void)
{
}

void gridpack::hello_world::HWApp::execute(int argc, char** argv)
{

gridpack::parallel::Communicator world;
boost::shared_ptr<HWNetwork> network(new HWNetwork(world));

std::string filename = "10x10.raw";

gridpack::parser::PTI23_parser<HWNetwork> parser(network);

parser.parse(filename.c_str());
gridpack::hello_world::HWFactory factory(network);

factory.load();

gridpack::serial_io::SerialBusIO<HWNetwork> busIO(128,network);
busIO.header("\nMessage from buses\n");

148

busIO.write();

gridpack::serial_io::SerialBranchIO<HWNetwork>
branchIO(128,network);

branchIO.header("\nMessage from branches\n");
branchIO.write();}}}

}

The top of the file contains the gridpack.hpp header as well as the application headers.
The constructor and destructors for the HWApp class are the standard defaults, so only the
execute function has any significant behavior. This function starts by defining a communi-
cator on the set of all processors and using that to instantiate and instance of an HWNetwork.
At this point the network exists, but it contains no buses or branches. The next step is to
read in a network configuration file with the name 10x10.raw. This file is written using
the standard PSS/E version 23 format. For this simple application, it is assumed that the
file is available in the directory in which the program is being run (this file is included in
the hello world directory as part of the GridPACK distribution). The program creates an
instance of a PTI23 parser and uses this to parse the configuration file. The program now
has a copy of the full network stored internally, but the buses and nodes are not distributed
in a way that is convenient for computation. Calling the partition method on the network
redistributes all buses and branches so that each process has a relatively connected chunk of
the network.

The next step is to create an HWFactory instance and use this to call the base class load
method. This method in turn calls the load method on all the individual buses and branches
and transfers data from the data collection objects to the internal parameters of the buses
and branches. The data collection objects were initialized with data collected from the
10x10.raw file when the parse function was called. The remaining lines create SerialBusIO
and SerialBranchIO objects that are used to print out the messages from individual bus
and branch objects. The busIO object is used to print out a header (“Message from buses”)
and then a message from each bus identifying itself by the bus ID defined in the PSS/E file.
Similarly, the branchIO obect writes out a header and then a message from each branch
identifying itself by the IDs of the buses at either end. The final part of the “Hello world” ap-
plication is the main calling program, located in the file hw main.cpp. This program consists
of the lines

#include "gridpack/include/gridpack.hpp"
#include "hw_app.hpp"

int main(int argc, char **argv)
{

gridpack::parallel::Environment env(argc, argv);

gridpack::hello_world::HWApp app;
app.execute(argc, argv);

149

return 0;
}

The program consists of a line creating a parallel environment, a line instantiating an HWApp,
and a line calling the execute method on the application. The constructor for the parallel
environment initializes the underlying parallel communication libraries. The destructor is
called at the end of main and terminates all communication libraries so that the program
exits cleanly. The HWApp instance runs the application when execute is called. A portion
of the output looks like

Message from buses
Hello world from bus 1
Hello world from bus 2
Hello world from bus 3
Hello world from bus 4
Hello world from bus 5
Hello world from bus 6
Hello world from bus 7

:
Message from branches
Hello world from the branch connecting bus 1 to bus 2
Hello world from the branch connecting bus 2 to bus 3
Hello world from the branch connecting bus 3 to bus 4
Hello world from the branch connecting bus 4 to bus 5
Hello world from the branch connecting bus 5 to bus 6

:

Note that this output would be the same, regardless of the number of processors that are
used to run the code. This is in spite of the fact that the distribution of buses and branches
may be different for different numbers of processors.

10.2 Resistor Grid Application

The resistor grid is a more complicated example that illustrates how GridPACK can be used
to set up equations describing a physical system and then solve the system using a linear
solver. The physical system is a rectangular grid with resistors connecting all the nodes. Two
nodes are chosen to be set at fixed potentials, these then drive currents through the rest of
the network resulting in different currents on the individual branches and different voltages
on the different buses (nodes). The system is illustrated schematically in Figure 10.1.

The topology and choice of nodes held at fixed potential is determined by the network con-
figuration file, as are the values of the resistance on each of the branches. The system is

150

Figure 10.1: A schematic diagram of a simple resistor grid network. The buses (nodes) in
blue are set at fixed external voltages, the remaining bus voltages and branch currents are
calculated by the application.

151

described by a set of coupled equations representing the application of Kirkoff’s law to each
of the nodes that is not held at a fixed potential. Kirkoff’s law is expressed by the equations∑

β∈{α}
iαβ = 0

where iαβ is the current flowing between nodes α and β and {α} is the set of nodes connected
directly to α. This current can be found from Ohm’s law

iαβ =
Vα −Vβ
Rαβ

Where Vα and Vβ are the voltage potentials on nodes α and β and Rαβ is the resistance on the
branch connecting nodes α and β. Plugging the expression for the current back into Kirkoff’s
law gives the equation ∑

β∈{α}

Vα −Vβ
Rαβ

= Vα
∑
β∈{α}

1
Rαβ
−

∑
β∈{α}

Vβ
Rαβ

= 0

The unknowns in this system are the potentials Vα. Kirkoff’s law applies to any node that
does not have an applied value of the potential. The nodes that do have a fixed potential
appear as part of the right hand side vector. Assuming that any node with a non-fixed value
of the potential is attached to at most one fixed node, then the αth element of the right hand
side vector is

V 0
β

Rαβ

where V 0
β is the value of the fixed potential on node β and α is attached to β. If α is not

attached to β, then the element is zero. The voltages can be evaluated by solving the matrix
equation

C ·V = I0

The voltage vector and right hand side have already been discussed. The matrix elements
have the form

Cαα =
∑
β∈{α}

1
Rαβ

Cαβ = − 1
Rαβ

if α , β

With this background, we can talk about the implementation of the resistor grid application.

Much of the basic structure of the classes has already been discussed in the “Hello world” ex-
ample in section 10.1, so we will limit ourselves to discussing new features. The source code
for this example can be found in the resistor grid directory. The RGBus class inherits
from the BaseBusComponent class and implements the following functions (in addition to
the constructor and destructor)

152

void load(const boost::shared_ptr
<gridpack::component::DataCollection> &data);

bool isLead() const;
double voltage() const;
bool matrixDiagSize(int *isize, int *jsize) const;
bool matrixDiagValues(ComplexType *values);
bool vectorSize(int *isize) const;
bool vectorValues(ComplexType *values);
void setValues(gridpack::ComplexType *values);
int getXCBufSize();
void setXCBuf();
bool serialWrite(char *string, const int bufsize,

const char *signal = NULL);

In addition, the RGBus class has three private members

bool p_lead;
double *p_voltage;
double p_v;

The variable p lead keeps track of whether a bus has a fixed voltage applied to it. In order
to correctly calculate the currents, it is necessary to exchange voltages at the end of the calcu-
lation. The voltages at each bus are stored in an exchange buffer that can be accessed by the
pointer p voltage. The voltages in the external PSS/E file are read in before the exchange
buffer is allocated, so to make sure there is a variable to store the value, the variable p v is
also included as a private member. In addition to implementing load and serialWrite,
the RGBus class implements several functions in the MatVecInterface, as well as two
functions that are unique to this class.

Similarly, the RGBranch class implements the functions

void load(const boost::shared_ptr
<gridpack::component::DataCollection> &data);

double resistance(void) const;
bool matrixForwardSize(int *isize, int *jsize) const;
bool matrixReverseSize(int *isize, int *jsize) const;
bool matrixForwardValues(ComplexType *values);
bool matrixReverseValues(ComplexType *values);
bool serialWrite(char *string, const int bufsize,

const char *signal = NULL);

and has the private member

double p_resistance;

153

The RGBus load method has the implementation

void gridpack::resistor_grid::RGBus::load(const
boost::shared_ptr<gridpack::component::DataCollection> &data)

{
int type;
data->getValue(BUS_TYPE,&type);
if (type == 2) {

p_lead = true;
data->getValue(BUS_BASEKV,&p_v);

}
}

The PSS/E file that is used to run this application has been configured so that the bus type
parameter is set to 2 if the bus has a fixed voltage and the value of the voltage is stored in
the BUS BASEKV variable. The private member p lead is initialized to false in the RGBus
constructor and p v is initialized to zero. In the load method, the bus type is assigned
from the BUS TYPE variable in the data collection. If it is 2, the bus has a fixed value of the
potential and p lead is set to true. The value of p v is assigned to whatever is stored in the
BUS BASEKV variable when the bus type is 2. The contents of p v will eventually be mapped
to p voltage, once the exchange buffers are allocated.

The load function for RGBranch simply assigns the data collection variable BRANCH R to
the private member p resistance.

void gridpack::resistor_grid::RGBranch::load(
const boost::shared_ptr
<gridpack::component::DataCollection> &data)

{
data->getValue(BRANCH_R,&p_resistance,0);

}

Once the bus and branch private members have been set using the load methods, the values
can be recovered by other objects using the accessors isLead, voltage, and resistance.
These functions are used in the math interface implementations to calculate values of the
matrix elements and right hand side vectors and have the relatively simple forms

bool gridpack::resistor_grid::RGBus::isLead() const
{

return p_lead;
}

double gridpack::resistor_grid::RGBus::voltage() const
{

154

return *p_voltage;
}

double gridpack::resistor_grid::RGBranch::resistance(void) const
{

return p_resistance;
}

Note that the voltage function is returning the contents of p voltage, which will contain
up-to-date values of the voltage once the calculation begins.

The diagonal matrix block routines in the bus class have the implementations

bool gridpack::resistor_grid::RGBus::matrixDiagSize(int *isize,
int *jsize) const

{
if (!p_lead) {

*isize = 1;
*jsize = 1;
return true;

} else {
return false;

}
}

bool gridpack::resistor_grid::RGBus::matrixDiagValues(
ComplexType *values)

{
if (!p_lead) {

gridpack::ComplexType ret(0.0,0.0);
std::vector<shared_ptr<BaseComponent> > branches;
getNeighborBranches(branches);
int size = branches.size();
int i;
for (i=0; i<size; i++) {

gridpack::resistor_grid::RGBranch *branch
= dynamic_cast<gridpack::resistor_grid::RGBranch*>

(branches[i].get());
ret += 1.0/branch->resistance();

}
values[0] = ret;
return true;

} else {
return false;

155

}
}

The matrixDiagSize routine returns a single element in the values array if the bus is not
a lead with a fixed voltage, otherwise it returns false and there are no values in the values
array. The matrixDiagValues function sets the first element of the values array equal to
the sum of the reciprocal of the resistances on all the attached branches, if the bus is not a
lead. To calculate this quantity, it starts by calling the getNeighborBranches function to
get a list of pointers to attached branches. These pointers are all of type BaseComponent,
so they need to be cast to pointers of type RGBranch before functions like resistance
can be called on them. This is done by first calling the get function on the shared ptr to
the BaseComponent object to get a bare pointer to the neighboring branch and then doing a
dynamic cast to a pointer of type RGBranch. The resistance method can now by called on the
RGBranch pointer to get the resistance of the branch and use it to calculate the contribution
to the diagonal matrix element. This value is assigned to values[0]. If the bus is a lead,
then no values are calculated and the function returns false. It is also worth noting that this
function will only be called on buses that are local to the process, so each bus that evaluates
a diagonal matrix element will have a complete set of branches attached to it. This is not
the case for ghost buses. These have only one branch attached to them, no matter how many
branches are attached to it in the original network.

The off-diagonal elements are calculated by the branch components in the functions matrixForwardSize,
matrixReverseSize, matrixForwardValues, and matrixReverseValues. The ma-
trix C for the resistor grid problem is completely symmetric, so in this case, the forward and
reverse calculations are identical. For realistic power problems, this is not generally true,
and the forward and reverse functions will have different implementations. The forward
functions are described below, the implementation of the reverse functions is identical. The
branch forward size and value functions are

bool gridpack::resistor_grid::RGBranch::matrixForwardSize(
int *isize, int *jsize) const

{
gridpack::resistor_grid::RGBus *bus1

= dynamic_cast<gridpack::resistor_grid::RGBus*>(getBus1().get());
gridpack::resistor_grid::RGBus *bus2

= dynamic_cast<gridpack::resistor_grid::RGBus*>(getBus2().get());
if (!bus1->isLead() && !bus2->isLead()) {

*isize = 1;
*jsize = 1;
return true;

} else {
return false;

}
}

156

bool gridpack::resistor_grid::RGBranch::matrixForwardValues(
ComplexType *values)

{
gridpack::resistor_grid::RGBus *bus1

= dynamic_cast<gridpack::resistor_grid::RGBus*>(getBus1().get());
gridpack::resistor_grid::RGBus *bus2

= dynamic_cast<gridpack::resistor_grid::RGBus*>(getBus2().get());
if (!bus1->isLead() && !bus2->isLead()) {

values[0] = -1.0/p_resistance;
return true;

} else {
return false;

}
}

Before these functions can calculate return values, they must first determine if one of the
buses at either end of the branch is a lead bus. To do this, the functions need to get pointers
to the “from” and “to” buses at either end of the branch. They can do this through the
getBus1 and getBus2 calls in the BaseBranchComponent class which return pointers
of type BaseComponent. These pointers can then be converted to RGBus pointers by a
dynamic cast. The isLead functions can be called to find out if either bus is a lead bus. If
neither bus is a lead bus, the size of the off-diagonal block is returned as a 1x1 matrix and
the off-diagonal matrix element is calculated and returned in values[0]. Otherwise both
functions return false to indicate that there is no contribution to the matrix from this branch.

In addition to calculating values of the matrix C, it is also necessary to set up the right hand
side vector. This is done via the functions vectorSize and vectorValues defined on the
buses. Only buses that are not lead buses contribute to the right hand side vector. On the
other hand, the only non-zero values in the right hand side vector come from lead buses that
are attached to non-lead buses. The vectorSize function has the implementation

bool gridpack::resistor_grid::RGBus::vectorSize(int *isize) const
{

if (!p_lead) {
*isize = 1;
return true;

} else {
return false;

}
}

If a bus is not a lead bus, it contributes a single value, otherwise it does not and the function
returns false. The vectorValues function is a bit more complicated. It has the form

bool gridpack::resistor_grid::RGBus::vectorValues(ComplexType *values)
{

157

if (!p_lead) {
std::vector<boost::shared_ptr<BaseComponent> > branches;
getNeighborBranches(branches);
int size = branches.size();
int i;
gridpack::ComplexType ret(0.0,0.0);
for (i=0; i<size; i++) {

gridpack::resistor_grid::RGBranch *branch
= dynamic_cast<gridpack::resistor_grid::RGBranch*>

(branches[i].get());
gridpack::resistor_grid::RGBus *bus1

= dynamic_cast<gridpack::resistor_grid::RGBus*>
(branch->getBus1().get());

gridpack::resistor_grid::RGBus *bus2
= dynamic_cast<gridpack::resistor_grid::RGBus*>

(branch->getBus2().get());
if (bus1 != this && bus1->isLead()) {

ret += bus1->voltage()/branch->resistance();
} else if (bus2 != this && bus2->isLead()) {

ret += bus2->voltage()/branch->resistance();
}

}
values[0] = ret;
return true;

} else {
return false;

}
}

The vectorValues function starts by getting a list of branches that are attached to the call-
ing bus and then looping over the list. Pointers to each of the branches, as well as the buses
at each end of the branch are obtained using the getBus1 and getBus2 functions. It is still
necessary to determine which end of the branch is opposite the calling bus and this can be
done by checking the conditions bus1 != this and bus2 != this. One of these will be
true for the bus opposite the calling bus. If this bus is also a lead bus, then a contribution
is added to the right hand side vector element. The contribution can be calculated by get-
ting the value of the fixed voltage from the lead bus and dividing it by the resistance of the
branch. These values can be obtained by calling the bus voltage function and the branch
resistance function. The *p voltage value of the calling bus is not used. If the calling
bus is a lead bus, then the function returns false.

The last function related to vectors that is implemented in the MatVecInterface is the
setValues function

158

void gridpack::resistor_grid::RGBus::setValues(
gridpack::ComplexType *values)

{
if (!p_lead) {

p_voltage = real(values[0]);
}

}

Once the voltages have been calculated by solving Kirkoff’s equations, it is necessary to have
some way of pushing these back on the buses so they can be written to output. The results
of the linear solver are returned in the values array. The number of values in this array
corresponds to the number of values contributed to the right hand side vector (in this case
1 if the bus is not a lead). Thus, the value is assigned to the internal p voltage variable if
the bus is not a lead bus. This function will be called by all buses as part of the mapToBus
function in the BusVectorMap. In order to correctly calculate the current on all branches
for export to standard out, it is necessary to have up-to-date values of the voltage on all buses,
including ghost buses. This requires a data exchange at the end of the calculation. To enable
this exchange, the getXCBufSize and setXCBuf functions must be implemented in the
RGBus class. These functions have the form

int gridpack::resistor_grid::RGBus::getXCBufSize()
{

return sizeof(double);
}

void gridpack::resistor_grid::RGBus::setXCBuf(void *buf)
{

p_voltage = static_cast<double*>(buf);
*p_voltage = p_v;

}

The only variable that needs to be exchanged is the value of the potential, so getXCBufSize
returns the number of bytes in a single double precision variable. The setXCBuf function
assigns the buffer pointed to by the variable buf to the internal data member p voltage. At
the same time, it initializes the contents of p voltage to the variable p v, which contains the
voltage read in from the external PSS/E file. The serialWrite functions on the buses and
branches are used to write the voltages and currents on all buses and branches to standard
output. The serialWrite function on the buses has the form

bool gridpack::resistor_grid::RGBus::serialWrite(char *string,
const int bufsize, const char *signal)

{
if (p_lead) {

sprintf(string,"Voltage on bus %d: %12.6f (lead)\n",

159

getOriginalIndex(),*p_voltage);

} else {
sprintf(string,"Voltage on bus \%d: \%12.6f\n",

getOriginalIndex(),*p_voltage);
}
return true;

}

All buses return a string so the function always returns true. The printout consists of the
bus index, obtained with the getOriginalIndex function, and the value of the voltage
on the bus. Lead buses are marked in the output, indicating that the voltage is the same
as that specified in the input file, the remaining voltages are calculated by solving Kirkoff’s
equations. For branches, the serialWrite function is used to calculate and print the current
flowing across each branch

bool gridpack::resistor_grid::RGBranch::serialWrite(char *string,
const int bufsize, const char *signal)

{
gridpack::resistor_grid::RGBus *bus1

= dynamic_cast<gridpack::resistor_grid::RGBus*>(getBus1().get());
gridpack::resistor_grid::RGBus *bus2

= dynamic_cast<gridpack::resistor_grid::RGBus*>(getBus2().get());
double v1 = bus1->voltage();
double v2 = bus2->voltage();
double icur = (v1 - v2)/p_resistance;
sprintf(string,"Current on line from bus %d to %d is: %12.6f\n",

bus1->getOriginalIndex(),bus2->getOriginalIndex(),icur);
return true;

}

All branches report the current flowing through them, so this function also returns true for all
branches. To calculate the current, it is necessary to get the value of the voltages at both ends
of the branch using methods already described and then calculate the current by dividing
the difference in voltages by the resistance of the branch. The print line prints the current
and uniquely identifies each branch by including the IDs of the buses at either end.

The factory class for resistor grid application only uses functionality in the BaseFactory class
and has the simple form

class RGFactory
: public gridpack::factory::BaseFactory<RGNetwork> {
public:

RGFactory(boost::shared_ptr<RGNetwork> network)

160

: gridpack::factory::BaseFactory<RGNetwork>(network) {}

˜RGFactory() {}
};

Again, the BaseFactory class from which RGFactory inherits is initialized by passing
the network argument through the constructor. The declaration for this class is in the file
rg factory.hpp. There is no corresponding .cpp file.

The RGApp class declaration is also simple and consists of the functions

class RGApp
{

public:

RGApp(void);
˜RGApp(void);
void execute(int argc, char** argv);

};

Again, arguments from the top level main program can be passed through to the execute
function, which is responsible for implementing the actual resistor grid calculation. The
RGApp class declaration is contained in the rg app.hpp file. The implementation is con-
tained in the rg app.cpp file. The only complicated function in the implementation is
execute, which consists of

void gridpack::resistor_grid::RGApp::execute(int argc, char** argv)
{

// read configuration file
gridpack::parallel::Communicator world;
gridpack::utility::Configuration *config =

gridpack::utility::Configuration::configuration();
config->open("input.xml",world);
gridpack::utility::Configuration::CursorPtr cursor;
cursor = config->getCursor("Configuration.ResistorGrid");

// create network and read in external PTI file
// with network configuration
boost::shared_ptr<RGNetwork> network(new RGNetwork(world));
gridpack::parser::PTI23_parser<RGNetwor> parser(network);
std::string filename;
if (!cursor->get("networkConfiguration",&filename)) {

filename = "small.raw";

161

}
parser.parse(filename.c_str());

// partition network
network->partition();

// create factory and load parameters from input
// file to network components
gridpack::resistor_grid::RGFactory factory(network);
factory.load();

// set network components using factory and set up exchange
// of voltages between buses
factory.setComponents();
factory.setExchange();
network->initBusUpdate();

// create mapper to generate voltage matrix
gridpack::mapper::FullMatrixMap<RGNetwork> vMap(network);
boost::shared_ptr<gridpack::math::Matrix> V = vMap.mapToMatrix();

// create mapper to generate RHS vector
gridpack::mapper::BusVectorMap<RGNetwork> rMap(network);
boost::shared_ptr<gridpack::math::Vector> R = rMap.mapToVector();

// create solution vector by cloning R
boost::shared_ptr<gridpack::math::Vector> X(R->clone());

// create linear solver and solve equations
gridpack::math::LinearSolver solver(*V);
solver.configure(cursor);
solver.solve(*R, *X);

// push solution back on to buses
rMap.mapToBus(X);

// exchange voltages so that all buses have correct values. This
// guarantees that current calculations on each branch are correct
network->updateBuses();

// create serial IO objects to export data
gridpack::serial_io::SerialBusIO<RGNetwork> busIO(128,network);
char ioBuf[128];

162

busIO.header("\nVoltages on buses\n\n");
busIO.write();

gridpack::serial_io::SerialBranchIO<RGNetwork>
branchIO(128,network);

branchIO.header("\nCurrent on branches\n\n");
branchIO.write();

}

The beginning of the resistor grid application is more complicated than “Hello world” in
that it uses an input file to control the properties of the linear solver that is used to solve
current equations. To read in the input file, the application starts by creating a communi-
cator on the set of all processors. Only one configuration object is available to the applica-
tion and the execute function gets a pointer to this instance by calling the static function
Configuration::configuration(). This pointer can then be used to read in the input
file, “input.xml”, across all processes in the communicator world using the open method.
All processors now have access to the contents of input.xml. The input file contains two
pieces of information, the name of the PSS/E formatted resistor grid configuration file and
the parameters for the linear solver. The input file has the form

<?xml version="1.0" encoding="utf-8"?>
<Configuration>

<ResistorGrid>
<networkConfiguration> small.raw </networkConfiguration>
<LinearSolver>

<PETScOptions>
-ksp_view
-ksp_type richardson
-pc_type lu
-pc_factor_mat_solver_package superlu_dist
-ksp_max_it 1

</PETScOptions>
</LinearSolver>

</ResistorGrid>
</Configuration>

The resistor grid file name can be obtained by getting a cursor pointer that is pointed at the
ResistorGrid block in the input file by using the getCursor function and then using
the get function to retrieve the actual file name located in the networkConfiguration
field. If no file is specified in the input deck, the file name defaults to “small.raw”. At
the same time, an RGNetwork object is instantiated and used to initialize on instance of
PTI23 parser. This can then read in the resistor grid configuration file using the parse
function.

163

At this point, all buses and branches have been created, but they may not be distributed in a
way that supports computation. The network partition function is called to redistribute
the network so that each process has maximal connections between components located on
the process and minimal connections to components located on other processes. The ghost
buses and branches are also added by the partition function.

After partitioning, an RGFactory object is created and the base class load method is called
to initialize the internal data elements on each bus and branch in the network. This function
initializes both locally held components as well as ghost components, so there is no need
for a data exchange to guarantee that all components are up to date. The factory also calls
the base class setComponents method, which determines several types of internal indices
that are used to set up calculations. The buffers needed to exchange data at the end of the
calculation are set up by a call to the factory setExchangemethod. Additional internal data
structures needed for the data exchange between buses are created by calling the network
initBusUpdate method. No data exchanges are needed between branch components.

The next step in the algorithm is to create the matrix C, the right hand side vector and a

vector to contain the solution. Two separate mappers are needed, one for the matrix C and
the other for the right hand side vector. For the matrix, the code creates an instance of
a FullMatrixMap that is initialized with the resistor grid network. The mapToMatrix
function is called to create the matrix V. The right hand side vector is created by creating
instance of a BusVectorMap and using the mapToVector function to create the vector R.
The solution vector X does not need to be initialized to any particular value, it just needs to
be the same size as R so it is created by having R call the clone method in the Vector class
and using the result to initialize X in the Vector class constructor.

Once V, R, and X are available, the equations can be solved using a linear solver. The linear
solver is created by initializing an instance of LinearSolver with the matrix V. The solver
class configure method can be used to transfer solver parameters in the LinearSolver
block in input.xml to the solver. The cursor pointer that is taken as an argument to
configure is already pointing to the ResistorGrid block in the input file, so configure
will pick up any parameters in a LinearSolver block within the ResistorGrid block.
After configuring the solver, the solution vector can be obtained by calling the solvemethod
and the resulting voltages are pushed back to buses using the mapToBus method in the
BusVectorMap class.

After calling mapToBus, all locally held buses have correct values of the voltage, but ghost
buses still have their initial values. To correct the voltages on ghost buses, it is necessary to
call the network updateBuses function. The buffers p voltage now contain correct values
of the voltage on all buses.

The only remaining step is to write the results to standard output. The voltages are written
by creating an instance of SerialBusIO. The maximum buffer size is set to 128 characters,
which is enough to hold any lines of output coming from the buses. A header labeling the
bus output is written to standard out using the header method and then bus voltages are
written by calling write. Similarly, output from the branches can be written by creating an
instance of SerialBranchIO, writing a header using the header method and then calling

164

write. Since only one type of output comes from the branches and buses, no character string
is passed in as arguments to the write functions. The execute function has now completed
all tasks associated with solving the resistor grid problem and passes control back to the main
calling program.

The main calling program is relatively simple and consists of the code

int main(int argc, char **argv)
{

gridpack::parallel::Environment env(argc, argv);
gridpack::math::Initialize();
gridpack::resistor_grid::RGApp app;
app.execute(argc, argv);
gridpack::math::Finalize();
return 0;

}

The parallel computing environment is set up by creating an instance of Environment. The
computing environment is also cleaned up at the end of the calculation when the destructor
for this object is called. The math libraries are initialized by a call to the static Initialize
method and cleaned up at the end of the calculation by a call to Finalize. The only re-
maining calls are to create an instance of an RGApp and call its execute method.

A portion of the output from the resistor grid calculation is the following

GridPACK math module configured on 8 processors
:

Voltages on buses

Voltage on bus 1: 1.000000 (lead)
Voltage on bus 2: 0.667958
Voltage on bus 3: 0.467469
Voltage on bus 4: 0.329598
Voltage on bus 5: 0.227289
Voltage on bus 6: 0.148733
Voltage on bus 7: 0.088491

:
Current on branches

Current on line from bus 1 to 2 is: 20.000000
Current on line from bus 2 to 3 is: 4.009776
Current on line from bus 3 to 4 is: 2.757436
Current on line from bus 4 to 5 is: 2.046167
Current on line from bus 5 to 6 is: 4.545785

:

165

The first line is written by the call to the math library Initialize function and reports on
the number of processors being used in the calculation. This information is useful in keeping
track of the performance characteristics of different calculations. Some information from the
solvers is usually printed after this. At the end of the calculation, the values of the voltages
on the buses are printed out and then the current on each of the branches. The buses with
externally applied voltages are also identified in the output.

10.3 Contingency Analysis

An example contingency application has been included in the contingency analysis direc-
tory. This contingency analysis is simpler than the one available under the applications
directory and provides a relatively compact demonstration of some of the advanced features
of GridPACK. This application is built entirely around the power flow module, so it has no
network component classes of its own. The main functionality is located in the CADriver
class that consists of two methods (other than the constructor and destructor). One function
is used to read in a list of contingencies and convert them to a corresponding Contingency
data structure and the other function executes the contingency analysis calculation. These
two functions will be discussed in detail.

The function for reading in the contingencies and converting them to a list of Contingency
data structures has the form

std::vector<gridpack::powerflow::Contingency> getContingencies(

gridpack::utility::Configuration::ChildCursors contingencies)

The Contingency data structures are defined in as part of the power flow module and exist
in the gridpack::powerflow namespace. The list of cursors represented by the contin-
gencies variable is obtained by the calling program before calling this function. The function
itself is

std::vector<gridpack::powerflow::Contingency> ret;
int size = contingencies.size();
int i, idx;
gridpack::utility::StringUtils utils;
for (idx = 0; idx < size; idx++) {

std::string ca_type;
contingencies[idx]->get("contingencyType",&ca_type);
std::string ca_name;
contingencies[idx]->get("contingencyName",&ca_name);
if (ca_type == "Line") {

std::string buses;
contingencies[idx]->get("contingencyLineBuses",&buses);

166

std::string names;
contingencies[idx]->get("contingencyLineNames",&names);
std::vector<std::string> string_vec =

utils.blankTokenizer(buses);
std::vector<int> bus_ids;
for (i=0; i<string_vec.size(); i++) {

bus_ids.push_back(atoi(string_vec[i].c_str()));
}
string_vec.clear();
string_vec = utils.blankTokenizer(names);
std::vector<std::string> line_names;
for (i=0; i<string_vec.size(); i++) {

line_names.push_back(utils.clean2Char(string_vec[i]));
}
if (bus_ids.size() == 2*line_names.size()) {

gridpack::powerflow::Contingency contingency;
contingency.p_name = ca_name;
contingency.p_type = Branch;
int i;
for (i = 0; i < line_names.size(); i++) {
contingency.p_from.push_back(bus_ids[2*i]);
contingency.p_to.push_back(bus_ids[2*i+1]);
contingency.p_ckt.push_back(line_names[i]);
contingency.p_saveLineStatus.push_back(true);

}
ret.push_back(contingency);

}
}se if (ca_type == "Generator") {

std::string buses;
contingencies[idx]->get("contingencyBuses",&buses);
std::string gens;
contingencies[idx]->get("contingencyGenerators",&gens);
std::vector<std::string> string_vec =

utils.blankTokenizer(buses);
std::vector<int> bus_ids;
for (i=0; i<string_vec.size(); i++) {

bus_ids.push_back(atoi(string_vec[i].c_str()));
}
string_vec.clear();
string_vec = utils.blankTokenizer(gens);
std::vector<std::string> gen_ids;
for (i=0; i<string_vec.size(); i++) {

gen_ids.push_back(utils.clean2Char(string_vec[i]));
}

167

if (bus_ids.size() == gen_ids.size()) {
gridpack::powerflow::Contingency contingency;
contingency.p_name = ca_name;
contingency.p_type = Generator;
int i;
for (i = 0; i < bus_ids.size(); i++) {

contingency.p_busid.push_back(bus_ids[i]);
contingency.p_genid.push_back(gen_ids[i]);
contingency.p_saveGenStatus.push_back(true);

}
ret.push_back(contingency);

}
}

}
return ret;

This function is designed to parse input of the form

<?xml version="1.0" encoding="utf-8"?>
<ContingencyList>

<Contingency_analysis>
<Contingencies>

<Contingency>
<contingencyType>Line</contingencyType>
<contingencyName>CTG1</contingencyName>
<contingencyLineBuses> 13 14</contingencyLineBuses>
<contingencyLineNames> B1 </contingencyLineNames>

</Contingency>
<Contingency>

<contingencyType>Generator</contingencyType>
<contingencyName>CTG2</contingencyName>
<contingencyBuses> 2 </contingencyBuses>
<contingencyGenerators>1 </contingencyGenerators>

</Contingency>
</Contingencies>

</Contingency_analysis>
</ContingencyList>

The contingencies list in the argument consists of a vector of Configuration module
cursors, each of which is pointing to one of the Contingency blocks in this input.

The first few lines are used to create the return list, determine the number of contingencies
in the ChildCursors list and create a StringUtils object that can be used to parse the
input. The function then loops over all cursors in the contingencies list. All contingen-
cies should contain the contingencyType and contingencyName field, so these values

168

are obtained using the get function from the Configuration module. The type can be ei-
ther “Line” or “Generator”. Based on the type, the function bifurcates into two branches.
The “Line” branch looks for the strings corresponding to contingencyLineBuses and
contingencyLineNames and assigns these to the string variables buses and names. More
than one transmission element may be involved in the contingency. The StringUtils
blankTokenizer function is used to parse the buses string into a list of strings that can
then be converted to a list of integers. These represent the original indices of the buses at each
end of the branch. The names string is also converted to a list representing the character tag
identifying the individual transmission element between the two buses. This is then refor-
matted to a consistent 2-character format using the StringUtils clean2Char function.
The string vector string vec is used to hold the results from blankTokenizer, and the
final list of integers and character tags are stored in the variables bus ids and line names.
Each transmission element is characterized by two buses and a character tag, so the number
of bus IDs should be twice the number of tags. If this condition is met, then the contingency
is assumed to be well formed and a Contingency struct is created for it. After copying the
data stored in the variables ca type, ca name, bus ids and line names, this contingency
is added to the return variable ret.

The “Generator” branch is similar to the “Line” branch. The strings in the contingencyBuses
and contingencyGenerators fields are copied into the string variables buses and gens.
These are then converted into a list of bus IDs and generator tags using the blankTokenizer
function and stored in the list bus ids and gen ids. A generator is characterized by the
original index of the bus that it is associated with and the 2-character generator tag so the
size of the bus ids and gen ids vectors must be equal. If this condition is met, then a
Contingency struct is created, the contingency data is copied to it and the struct is added
to the return variable ret.

After all cursor in contingencies have been processed, the getContingencies function
returns a list of Contingency structs representing all the contingencies in the original XML
input file.

The execute function starts with the code block

void gridpack::contingency_analysis::CADriver::execute(int argc, char** argv)
{

gridpack::parallel::Communicator world;
gridpack::utility::CoarseTimer *timer =

gridpack::utility::CoarseTimer::instance();
int t_total = timer->createCategory("Total Application");
timer->start(t_total);

gridpack::utility::Configuration *config
= gridpack::utility::Configuration::configuration();

if (argc >= 2 && argv[1] != NULL) {
char inputfile[256];
sprintf(inputfile,"%s",argv[1]);

169

config->open(inputfile,world);
} else {

config->open("input.xml",world);
}

}

The user can pass in the name of the input file when they invoke the contingency analysis
application, and this is transmitted via the variables argc and argv in the argument list.
If an argument is detected, then the code will try and open a file using the argument as the
filename, otherwise it will assume the input file is called “input.xml”. Once the input file
is open, all processors have access to its contents. This section also creates a timing category
for the calculation and starts the timer. The call to CoarseTime::instance returns the
timer object and the createCategory call creates a timer category with the name “Total
Application”. It also returns a handle to this category. The start call begins the timer.
The timer can be started and stopped multiple times for the same category.

The next few lines are used to parse the input file and determine the size of the communica-
tors that should be used to run individual tasks.

gridpack::utility::Configuration::CursorPtr cursor;
cursor = config->getCursor("Configuration.Contingency_analysis");
int grp_size;
double Vmin, Vmax;
if (!cursor->get("groupSize",&grp_size)) {

grp_size = 1;
}
if (!cursor->get("minVoltage",&Vmin)) {

Vmin = 0.9;
}
if (!cursor->get("maxVoltage",&Vmax)) {

Vmax = 1.1;
}
gridpack::parallel::Communicator task_comm = world.divide(grp_size);

A CursorPtr is defined and set to point to the contents of the Contingency analysis
block in the input file using the getCursor function. This block contains parameters defin-
ing some of the properties of the simulation. The groupSize parameter sets the size of the
communicator on which individual power flow calculations are run. PThe power flow is not
very scalable in GridPACK and it is usually fastest to run it on one processor so the default
value is 1. The minVoltage and maxVoltage parameters are the limits, in p.u., for ac-
ceptable voltage variations on individual buses. Once the group size has been set, the world
communicator is divided into sub communicators using the divide function. This guaran-
tees that each subcommunicator contains at most the number of processes specified using
groupSize (one subcommunicator may contain less than this number). Each process is now
part of the world communicator and one subcommunicator.

170

The next block of code creates a power flow application on each task communicator and
initializes it.

boost::shared_ptr<gridpack::powerflow::PFNetwork>
pf_network(new gridpack::powerflow::PFNetwork(task_comm));

gridpack::powerflow::PFAppModule pf_app;
pf_app.readNetwork(pf_network,config);
pf_app.initialize();
pf_app.solve();
pf_app.ignoreVoltageViolations(Vmin,Vmax);

The first line creates a power flow network on the task communicator. The second line cre-
ates a power flow application. The readNetwork function assigns the powerflow network
(which currently has nothing in it) to the power flow application, along with the pointer to
the configuration module. The input file is expected to have a Powerflow block that con-
tains parameters for the power flow application. These include the location of the network
configuration file and the type of solver that is to be used. An example of a complete input
file is

<?xml version="1.0" encoding="utf-8"?>
<Configuration>

<Contingency_analysis>
<contingencyList>contingencies.xml</contingencyList>
<groupSize>2</groupSize>
<maxVoltage>1.1</maxVoltage>
<minVoltage>0.9</minVoltage>

</Contingency_analysis>
<Powerflow>

<networkConfiguration> IEEE14_ca.raw </networkConfiguration>
<maxIteration>50</maxIteration>
<tolerance>1.0e-6</tolerance>
<LinearSolver>

<PETScOptions>
-ksp_type richardson
-pc_type lu
-pc_factor_mat_solver_package superlu_dist
-ksp_max_it 1

</PETScOptions>
</LinearSolver>

</Powerflow>
</Configuration>

Note that it has two blocks, Contingency analysis and Powerflow. The parameters de-
scribing the contingency calculation and the location of the contingencies are located in the

171

first block and the power flow parameters are located in the second block. The readNetwork
function will read in the network configuration file and partition the network. The initialize
function is used to initialize the network components from the DataCollection objects
and assign exchange buffers. The call to solve is used to obtain a power solution to the base
problem with no contingencies. Since all tasks have the same data at this point, the network
solution is duplicated across all subcommunicators. The final call to ignoreVoltageViolations
sets a parameter in each network component that violates the voltage bounds for base case.
These components will be ignored in any subsequent checks for voltage violations.

The next step is to read in the contingencies and convert these to a list of contingency data
structs.

std::string contingencyfile;
if (!cursor->get("contingencyList",&contingencyfile)) {

contingencyfile = "contingencies.xml";
}
bool ok = config->open(contingencyfile,world);
cursor = config->getCursor(

"ContingencyList.Contingency_analysis.Contingencies");
gridpack::utility::Configuration::ChildCursors contingencies;
if (cursor) cursor->children(contingencies);
std::vector<gridpack::powerflow::Contingency>

events = getContingencies(contingencies);
if (world.rank() == 0) {

int idx;
for (idx = 0; idx < events.size(); idx++) {

printf("Name: %s\n",events[idx].p_name.c_str());
if (events[idx].p_type == Branch) {

int nlines = events[idx].p_from.size();
int j;
for (j=0; j<nlines; j++) {

printf(" Line: (from) %d (to) %d (line) \’%s\’\n",
events[idx].p_from[j],events[idx].p_to[j],
events[idx].p_ckt[j].c_str());

}
} else if (events[idx].p_type == Generator) {

int nbus = events[idx].p_busid.size();
int j;
for (j=0; j<nbus; j++) {
printf(" Generator: (bus) %d (generator ID) \’%s\’\n",

events[idx].p_busid[j],events[idx].p_genid[j].c_str());
}

}
}

}

172

The location of the contingency file is contained in the contingencyList field in the input
file. If this field is not present, the code defaults to the file name contingencies.xml.
The contintency file is then opened using the open function in the Configuration module
and a cursor is set to the Contingencies block within this file. The Configuration
children function returns a list of cursor pointers that point to each of the individual
Contingency blocks. The getContingencies function described above parses each of
these blocks and returns a vector of contingency data structs. The contingency list is repli-
cated on all processors. Process 0 is used to provide a listing of the contingencies to standard
output by looping over the events vector returned by the getContingencies function.

Once the contingencies have be determined, the code next sets up a task manager on the
world communicator and sets the number of tasks equal to the number of contingencies.

gridpack::parallel::TaskManager taskmgr(world);
int ntasks = events.size();
taskmgr.set(ntasks);

The task loop is created by defining a task id variable and a character string buffer that is
used inside the loop to create messages. The task manager then begins iterating over different
tasks.

int task_id;
char sbuf[128];
while (taskmgr.nextTask(task_comm, &task_id)) {

printf("Executing task %d on process %d\n",task_id,world.rank());

The call to nextTask takes the task communicator as one of its arguments so the value of
task id that is returned is the same for all processors on the communicator. This guarantees
that each of the processors in this copy of the power flow applicatin is working on the same
contingency. If the nextTask function returns false, the tasks have been completed and the
code exits from the while loop. At the start of the task, the code prints out a statement to
standard out describing which tasks are being executed by each processor.

The next few lines in the task loop are used to open a file so that the output from each task is
directed to a separate file. This can be used later to examine individual tasks.

sprintf(sbuf,"%s.out",events[task_id].p_name.c_str());
pf_app.open(sbuf);
sprintf(sbuf,"\nRunning task on %d processes\n",task_comm.size());
pf_app.writeHeader(sbuf);
if (events[task_id].p_type == Branch) {

int nlines = events[task_id].p_from.size();
int j;
for (j=0; j<nlines; j++) {

sprintf(sbuf," Line: (from) %d (to) %d (line) \’%s\’\n",

173

events[task_id].p_from[j],events[task_id].p_to[j],
events[task_id].p_ckt[j].c_str());

}
} else if (events[task_id].p_type == Generator) {

int nbus = events[task_id].p_busid.size();
int j;
for (j=0; j<nbus; j++) {

sprintf(sbuf," Generator: (bus) %d (generator ID) \’\%s\’\n",
events[task_id].p_busid[j],
events[task_id].p_genid[j].c_str());

}
}
pf_app.writeHeader(sbuf);

The first line is used to create a name for the output file using the contingency name. The
output from the power flow calculation is then redirected to this file using the power flow
open function. Next, some information about this particular contingency is written to the
file using some calls to the writeHeader method. This includes the number of processors
used to calculate the contingency and the details of the contingency itself.

The remaining lines in the while loop are used to solve the power flow equations.

pf_app.resetVoltages();
pf_app.setContingency(events[task_id]);
if (pf_app.solve()) {

pf_app.write();
bool ok = pf_app.checkVoltageViolations(Vmin,Vmax);
ok = ok && pf_app.checkLineOverloadViolations();
if (ok) {

sprintf(sbuf,"\nNo violation for contingency %s\n",
events[task_id].p_name.c_str());

} else {
sprintf(sbuf,"\nViolation for contingency %s\n",

events[task_id].p_name.c_str());
}
pf_app.print(sbuf);

}
pf_app.unSetContingency(events[task_id]);
pf_app.close();

}

Before doing the calculation, all voltages are returned to the original values defined in the
network configuration file using resetVoltages. The contingency parameters are set to
the values specified by the task id element in the events list using the setContingency
method.

174

The system is then solved using the power flow solve function. If the solution succeeds,
the calculation writes out the voltages and branch power flow values to the outpuf file. The
calculation also checks for voltage violations and line overload violations. The results of these
checks are written to the output file for each power flow calculation. After this is complete,
the powerflow calculation returns all contingency related parameters to their original values
using unSetContingency and closes the output file. This is repeated until all contingencies
in the event list have been evaluated.

At this point, the contingency application is essentially complete. The remaining lines of
code

taskmgr.printStats();
timer->stop(t_total);
if (events.size()*grp_size >= world.size()) {

timer->dump();
}

are used to print out a list of how many tasks were evaluated on each processor and to stop the
timing of the “Total Application” category. The timer dump method will print statistics
on the amount of time spent in the total application as well as reporting timings inside the
power flow application. The check on the dump call is to verify that all processors have
participated in at least one power flow calculation.

175

Chapter 11

Fortran 2003 Interface

GridPACK has developed a Fortran interface that can be used to access most of the function-
ality in the framework modules. The Fortran interface makes extensive use of the object-
oriented features in Fortran, so a compiler that supports the Fortran 2003 standard must be
used if creating Fortran applications. The Fortran compiler must also support the iso c binding
module, but this will usually be available if the compiler supports Fortran 2003. Most re-
cent compilers support Fortran 2003. A working power flow application written entirely in
Fortran has been included in the current release and demonstrates how to use the Fortran
interface. The Fortran implementation is very similar to the C++ interface and most of the
C++ documentation applies to the corresponding Fortran functionality. The remainder of
this section will highlight the important differences between the C++ and Fortran interfaces.

Because Fortran does not have any support for templates (that we know of), the Fortran
interface cannot support multiple different kinds of networks within a single application.
This means that only one bus and one branch class can be present in an application, so the
bus and branch classes must support all possible types of behavior. It is still possible to have
more than one network in an application, but all networks must be of the same type.

The bus and branch classes in the Fortran interface are represented by the Fortran derived
types application bus and application branch. These types have procedures bound
to them, as well as internal data elements. These types are defined in the Fortran file component template.F90
file that is located in the fortran/component directory. The application bus and branch
classes can be created by modifying a copy of component template.F90. The functions
in the math-vector interface and the component base classes are all defined in this file, along
with default implementations for these functions. Additional data elements and procedures
can be added to the bus and branch data types to create appropriate functionality for specific
problems.

A brief overview of the application bus type in the component template.F90 file is
provided here. Similar considerations apply to the application branch type. To use
the component template.F90 file it should first be copied to the directory where the
application source code resides and renamed to something appropriate. We will use the
name app component.F90. Inside the component file, the Fortran types bus xc data,

176

branch xc data, application bus, application branch are defined as part of the
application components module. These are the only types that need concern the appli-
cation developer. There are also two types defined in this file called application bus wrapper
and application branch wrapper. These are only used internally but must be defined in
this file. They should not be modified. There is a line at the bottom of the app component.F90
file that includes an external file component inc.F90. This file contains many functions
that are required by the interface and must be included in the application components
module. However, these functions should not be modified by the user so to avoid possible
errors and to simplify the file somewhat, these functions are put in an include file.

The application bus type has four parts. These consist of 1) application-specific data
elements, 2) data elements that must be defined in order for the component to interact with
rest of the framework, 3) application-specific functions that are defined by the user and 4)
framework functions that must be included in the component. The framework functions all
have base implementations can be modified to suit the application. The only data elements
that must be included in the application bus type is a variable of type bus xc data
and a pointer to this variable. The bus xc data type will be discussed further below and
represents all data that might need to be exchanged in a bus update.

The framework functions are directly analogous to the functions defined for the C++ imple-
mentation and users should refer to the documentation above to find out how these functions
work. This section will primarily discuss differences between the Fortran and C++ interfaces.
The Fortran compilers do not have the same name-mangling capabilities as C++ so all func-
tion names are preceded by either a bus or branch to distinguish between bus and branch
versions of the functions. A few functions only appear in the bus class or the branch class
and do not necessarily need this prefix, but to be consistent, this convention is used for all
functions.

Functions that are bound to the application bus type are already listed in the component template.F90.
These functions consist of both a declaration within the application bus type and a func-
tion or subroutine implementation within the application components module. The
declarations within the application bus type (after the contains keyword) have the
form

procedure::bus_matrix_diag_size
procedure::bus_matrix_diag_values
procedure::bus_matrix_forward_size
procedure::bus_matrix_reverse_size

:

The procedure keyword distinguishes a function or subroutine bound to the Fortran type
from a piece of data (which is declared as a data type using one of the intrinsic Fortran data
types or a Fortran type declaration). After the type declarations within the applications components
module, there is a contains keyword followed by the subroutine and function implementa-
tions for all the declared procedures. The original implementations in the component template.F90
file are just stubs for these functions and typically don’t do much. An example is the bus matrix diag size
function which originally has the implementation

177

logical function bus_matrix_diag_size(bus, isize, jsize)
implicit none
class(application_bus), intent(in) :: bus
integer, intent(out) :: isize, jsize
bus_matrix_diag_size = .false.
return

end function bus_matrix_diag_size

The initial implementation just returns false if this function is invoked and doesn’t set the
variables isize or jsize. Note the first item in the argument list. This is declared as being
of type class(application bus) with intent in. All functions and subroutines that are
bound to the application bus type must have this argument, even if they do not have any
other arguments. This argument provides a mechanism for accessing data items or functions
that are related to a particular application bus instance.

To see how the bus argument is used in actual practice, an implementation of this function
in a power flow application is shown below

logical function bus_matrix_diag_size(bus, isize, jsize)
implicit none
class(application_bus), intent(in) :: bus
integer, intent(out) :: isize, jsize
isize = 1
jsize = 1
bus_matrix_diag_size = .true.
if (bus%p_mode.eq.JACOBIAN) then

if (.not.bus%bus_is_isolated()) then
isize = 2
jsize = 2
bus_matrix_diag_size = .true.

else
bus_matrix_diag_size = .false.

endif
else if (bus%p_mode.eq.YBUS) then

if (.not.bus%bus_is_isolated()) then
bus_matrix_diag_size = .true.
isize = 1
jsize = 1

else
bus_matrix_diag_size = .false.

endif
return

endif
return

end function bus_matrix_diag_size

178

The application bus implementation for power flow contains the variable p mode and
a user-specified function bus is isolated (this is declared as a type-bound procedure).
To access this data and this function inside a type-bound procedure, use the Fortran “%”
symbol. The bus variable in the argument list is acting in a similar way to the “this”
pointer in C++ and refers back to the application bus instance that made the original
call to bus matrix diag size. Although the bus is isolated function implementation
has the variable bus in its argument list, it doesn’t need to explicitly pass this argument
when making a call from an application bus instance. The bus argument is assumed
in this case. Similarly, a call to the bus matrix diag size function, which has additional
arguments, would have the form

ok = bus%bus_matrix_diag_size(isize,jsize)

Following this syntax, it is possible to construct a complete set of functions for an arbitrary
application. Additional application-specific functions can be added to the component types
by declaring them as procedures within the type and adding their implementations to the
application components module.

There are a few procedures in both the bus and branch types that should not be modified.
No stubs for these appear in the component template.F90 file. For the application bus type,
these procedures are

procedure::bus_get_neighbor_branch
procedure::bus_get_neighbor_bus
procedure::bus_get_xc_buf_size
procedure::bus_get_xc_buf

For the application branch type, the procedures are

procedure::branch_get_bus1
procedure::branch_get_bus2
procedure::branch_get_xc_buf_size
procedure::branch_get_xc_buf

These procedures are required by other parts of the framework, but should not be modi-
fied by the user. Some other procedures are defined in the base class and do not appear as
procedure declarations in application bus and application branch types. These procedures
include

procedure::bus_get_num_neighbors
procedure::bus_set_reference_bus
procedure::bus_get_reference_bus
procedure::bus_get_original_index
procedure::bus_compare

179

for buses and

procedure::branch_get_bus1_original_index
procedure::branch_get_bus2_original_index
procedure::branch_compare

for branches. The bus and branch compare functions are used to determine if a bus or branch
is equal to another bus or branch. An example of how to use this function can be found in
the function that evaluates transformer contributions on branches for the power flow appli-
cation. The syntax for calling this function is

double complex function branch_get_transformer(branch, bus)
:

class(application_branch), intent(in) :: branch
class(application_bus), intent(in) :: bus
class(application_bus), pointer :: bus1, bus2

:
if (bus%bus_compare(bus1)) then

:

In this fragment, the bus compare function is being used to check if bus1 is equivalent to
bus. The branch compare function is used in a similar way.

The final issue in implementing the Fortran application bus and branch classes is under-
standing the exchange buffers. These buffers are declared at the top of the component template.F90
file as the bus xc data and branch xc data data types. Although the underlying For-
tran interface implementation makes extensive use of the iso c binding module, we have
worked very hard to keep the iso c binding data types out of the Fortran interface itself.
However, the one place where this is not possible is in the exchange buffers, so it is important
to use these data type declarations for any variables that are included in the exchange buffers.
The exchange buffers are declared as follows in the top of the component template.F90
file

type, bind(c), public :: bus_xc_data
!
! Example data types. Replace with application-specific values
!

integer(C_INT) int_reg
integer(C_LONG) int_long
real(C_FLOAT) real_s
real(C_DOUBLE) real_d
complex(C_FLOAT_COMPLEX) complex_s
complex(C_DOUBLE_COMPLEX) complex_d
logical(C_BOOL) log_reg

end type

180

The variables int reg, int long, real s, real d, complex s, complex d and log reg
are just examples and should be replaced with the variables used in the actual application.
Not all data types will be used in an application. Any buffer variables used in an application
should use the

iso c binding type declarations (C INT, C LONG, C FLOAT, C FLOAT COMPLEX, C DOUBLE COMPLEX,
C BOOL). Variables declared with the iso c binding types can be cast to regular Fortran
variables by relying on the compiler to automatically cast an assignment to the right sized
variable. For example

integer f_var
integer(C_INT) c_var

:
f_var = c_var

If f var is an 8 byte integer and c var is a 4 byte integer, the compiler can be relied on to
do the cast. This also works in the opposite direction, assuming that f var does not exceed
the capacity of a 4 byte variable.

The functions that access neighboring branches or buses also work differently than the cor-
responding C++ functions. Fortran does not support anything that looks like an STL vector
so neighbors are accessed from buses using a two step process. The first step is to get the
total number of neighbors attached to the bus using the bus get num neighbors proce-
dure. This allows users to set up a loop that can be used to run over either the neighboring
branches or the neighboring buses that are attached to the calling bus via a single branch.
The neighboring branches can then be accessed by using the bus get neighbor branch func-
tion which returns a Fortran pointer to the neighboring branch. The syntax for using this
function is

integer i, nbranch
type(application_branch), pointer :: branch
nbranch = bus%bus_get_num_neighbors()
do i = 1, nbranch

branch => bus%bus_get_neighbor_branch(i)
:

The bus get neighbor bus function works in a similar way and returns a pointer to the
bus at the other end of branch i. To get pointers to the buses at either end of a branch, use
the functions branch get bus1 and branch get bus2 procedures. Because the Fortran
interface only supports one type of bus or branch per application, these functions return
pointers of the correct type and there is no need to cast them to something else.

Most of the remaining differences between the Fortran and C++ interfaces are associated
with the GridPACK factory module. As with the component classes, the Fortran interface
only supports one kind of factory. This is the app factory type and it can be created by
copying the factory template.F90 file in the fortran/factory directory and making
application-specific changes to it. The factory base class contains the functions

181

procedure::set_components
procedure::load
procedure::set_exchange
procedure::set_mode
procedure::check_true

These functions behave the same way as the equivalent C++ functions. In addition, the
app factory type contains the two functions

procedure::create
procedure::destroy

Because Fortran does not support constructors and destructors in the same way as C++, it
is necessary to create explicit functions that implement whatever behaviors are imbedded
in the C++ constructors and destructors. This is accomplished in the Fortran interface by
adding create and destroy functions (or initialize and finalize functions) to most
of the Fortran implementations of the GridPACK modules.

Additional methods can be added to the app factory type to support application-specific
functionality. An example of how to do this is the set y bus procedure for the power flow
application. This subroutine is declared as a procedure in the app factory type. The im-
plementation is written as

subroutine set_y_bus(factory)
class(app_factory), intent(in) :: factory
class(application_bus), pointer :: bus
class(application_branch), pointer :: branch
class(network), pointer :: grid
integer nbus, nbranch, i
grid => factory%p_network_int
nbus = grid%num_buses()
nbranch = grid%num_branches()
do i = 1, nbus

bus => bus_cast(grid%get_bus(i))
call bus%bus_set_y_matrix()

end do
do i = 1, nbranch

branch => branch_cast(grid%get_branch(i))
call branch%branch_set_y_matrix()

end do
return

end subroutine set_y_bus

The functions for accessing the bus and branch objects work differently from the functions
that get neighboring branches or buses in the component classes. The neighbor bus and

182

branch functions return a pointer to the appropriate bus or branch directly to the calling
application. The get bus and get branch functions in the Fortran network class return
an opaque object that cannot be directly used in a Fortran code. To convert this to a bus or
branch pointer it is necessary to call the bus cast or branch cast functions which return
a pointer that can be called in Fortran.

The last remaining point is to provide a list of the existing Fortran modules that need to
be used in a GridPACK application using the Fortran interface. These modules need to be
included in any subroutine or function that is using the associated Fortran types. The existing
modules are

gridpack_network ! type or class network
application_factory ! type or class app_factory
application_components ! type or class application_bus and

! application_branch
gridpack_configuration ! type or class cursor
gridpack_full_matrix_map ! type or class full_matrix_map
gridpack_bus_vector_map ! type or class bus_vector_map
gridpack_gen_matrix_map ! type or class gen_matrix_map
gridpack_gen_vector_map ! type or class gen_vector_map
gridpack_math ! access to math initialization and

! finalization routines
gridpack_matrix ! type or class matrix
gridpack_vector ! type or class vector
gridpack_linear_solver ! type or class linear_solver
gridpack_nonlinear_solver ! type or class funcbuilder

! and nonlinear_solver
gridpack_communicator ! type or class communicator
gridpack_parallel ! access to parallel initialization

! and finalization routines
gridpack_parser ! class or type pti23_parser
gridpack_serial_io ! class or type bus_serial_io

! and branch_serial_io

The appropriate module should be included in any function or subroutine that uses objects
defined in the module. Modules can be included using the standard Fortran “use” state-
ment.

183

	Introduction
	Configuring and Building GridPACK
	Building GridPACK Applications
	GridPACK Framework Components
	Preliminaries
	Network Module
	Math Module
	Matrices
	Vectors
	Linear Solvers
	Non-linear Solvers

	Network Components
	Data Interface
	Factories
	Mapper Module
	Parser Module
	Serial IO Module
	Configuration Module

	Developing Applications
	Advanced Functionality
	Communicators
	Environment
	Task Manager
	Timers
	Exceptions
	Hash Distribution Module
	String Utilities
	Advanced Network Functionality
	Global Store
	Global Vector
	Bus Tables
	Analysis

	Generalized Matrix-Vector Interface
	Generalized Slab Mapper

	Optimization
	Application Modules
	Power Flow
	State Estimation Module
	Dynamic Simulation Module using Full Y-Matrix
	Kalman Filter

	GridPACK Examples
	``Hello World''
	Resistor Grid Application
	Contingency Analysis

	Fortran 2003 Interface

