Power Flow Equation Formulation

Yousu Chen
PNNL

January 5, 2015

This document is a description for how to formulate the power flow equation. The current version is for Newton-Raphson AC power flow.

Basic Equations

We start with the basic equations

$$
\begin{align*}
\mathbf{I} & =\mathbf{Y} \cdot \mathbf{V} \tag{1}\\
I_{i} & =\sum_{k=1}^{N} Y_{i k} V_{k} \tag{2}\\
S_{i} & =V_{i} I_{i}^{*} \\
& =V_{i}\left(\sum_{k=1}^{N} Y_{i k} V_{k}\right)^{*} \\
& =V_{i} \sum_{k=1}^{N} Y_{i k}{ }^{*} V_{k}{ }^{*} \tag{3}
\end{align*}
$$

where N is the number of buses in the network, \mathbf{V} is a vector of voltages, \mathbf{I} is a vector of currents and \mathbf{Y} is the Y matrix.

Suppose we define the complex voltages as

$$
\begin{equation*}
V_{i}=\left|V_{i}\right| e^{j \theta_{i}} \tag{4}
\end{equation*}
$$

and then define the phase angle between bus i and bus k as

$$
\begin{equation*}
\theta_{i k}=\theta_{i}-\theta_{k} \tag{5}
\end{equation*}
$$

Further, we can decompose the elements of the Y matrix into real and imaginary parts using

$$
\begin{equation*}
Y_{i k}=G_{i k}+j B_{i k} \tag{6}
\end{equation*}
$$

The $G_{i k}$ are called conductances and the $B_{i k}$ are called susceptances.
Using these definitions we can write the expressions for the quantity \mathbf{S} as

$$
\begin{equation*}
S_{i}=\sum_{k=1}^{N}\left|V_{i}\right|\left|V_{k}\right| e^{j \theta_{i k}}\left(G_{i k}-j B_{i k}\right) \tag{7}
\end{equation*}
$$

We can further decompose the S_{i} into real and imaginary parts using

$$
\begin{equation*}
S_{i}=P_{i}+j Q_{i} \tag{8}
\end{equation*}
$$

This can be rewritten as

$$
\begin{equation*}
P_{i}+j Q_{i}=\sum_{k=1}^{N}\left|V_{i}\right|\left|V_{k}\right|\left(\cos \theta_{i k}+j \sin \theta_{i k}\right)\left(G_{i k}-j B_{i k}\right) \tag{9}
\end{equation*}
$$

Resolving equation (9) into real and imaginary parts gives the expressions

$$
\left\{\begin{array}{l}
P_{i}=\sum_{k=1}^{N}\left|V_{i}\right|\left|V_{k}\right|\left(G_{i k} \cos \theta_{i k}+B_{i k} \sin \theta_{i k}\right) \tag{10}\\
Q_{i}=\sum_{k=1}^{N}\left|V_{i}\right|\left|V_{k}\right|\left(G_{i k} \sin \theta_{i k}-B_{i k} \cos \theta_{i k}\right)
\end{array}\right.
$$

Newton-Raphson AC Power Flow

Now set up power flow equations in the form of $\mathbf{f}(\mathbf{x})=\mathbf{0}$. The voltage magnitude and phase angle of the slack/reference bus $\left(\theta_{1}\right.$ and $\left.\left|V_{1}\right|\right)$ are known.

Define

$$
\begin{align*}
\theta & =\left[\begin{array}{c}
\theta_{2} \\
\cdot \\
\cdot \\
\cdot \\
\theta_{N}
\end{array}\right] \tag{11}\\
|\mathbf{V}| & =\left[\begin{array}{c}
\left|V_{2}\right| \\
\cdot \\
\cdot \\
\cdot \\
\left|V_{N}\right|
\end{array}\right] \tag{12}\\
\mathbf{x} & =\left[\begin{array}{c}
\boldsymbol{\theta} \\
|\mathbf{V}|
\end{array}\right] \tag{13}
\end{align*}
$$

The form of the vector function $\mathbf{f}(\mathbf{x})$ is

$$
\mathbf{f}(\mathbf{x})=\left[\begin{array}{c}
P_{2}(\mathbf{x})-P_{2} \tag{14}\\
\cdot \\
\cdot \\
\cdot \\
P_{N}(\mathbf{x})-P_{N} \\
------ \\
Q_{2}(\mathbf{x})-Q_{2} \\
\cdot \\
\cdot \\
Q_{N}(\mathbf{x})-Q_{N}
\end{array}\right]=-\left[\begin{array}{c}
\Delta \mathbf{P}(\mathbf{x}) \\
\Delta \mathbf{Q}(\mathbf{x})
\end{array}\right]=\mathbf{0}
$$

where

$$
\left\{\begin{array}{l}
\Delta \mathbf{P}=P_{i}-P_{i}(\mathbf{x}) \tag{15}\\
\Delta \mathbf{Q}=Q_{i}-Q_{i}(\mathbf{x})
\end{array}\right.
$$

P_{i} and Q_{i} can be obtained from the equation (10).
Now consider the Jacobian of \mathbf{f}, \mathbf{J}. The dimension of \mathbf{J} using the expression for the complex voltage (4) is $(2(N-1))(2(N-1))$. The Jacobian itself
has the form

$$
\begin{align*}
\mathbf{J} & =\left[\begin{array}{ll}
\mathbf{J} 1 & \mathbf{J} 2 \\
\mathbf{J} 3 & \mathbf{J} 4
\end{array}\right] \\
& =\left[\begin{array}{ll}
\frac{\partial \mathbf{P}}{\partial \boldsymbol{\theta}} & \frac{\partial \mathbf{P}}{\partial \mathbf{V} \mid} \\
\frac{\partial \mathbf{Q}}{\partial \boldsymbol{\theta}} & \frac{\partial \mathbf{Q}}{\partial|\mathbf{V}|}
\end{array}\right] \tag{16}
\end{align*}
$$

The N-R iteration itself has the form

$$
\begin{equation*}
\mathbf{J} \Delta \mathbf{x}=-\mathbf{f}(\mathbf{x}) \tag{17}
\end{equation*}
$$

Combining equations (14), (16) and (17) gives the expression

$$
\left[\begin{array}{ll}
\mathbf{J} 1 & \mathbf{J} 2 \tag{18}\\
\mathbf{J} 3 & \mathbf{J} 4
\end{array}\right]\left[\begin{array}{c}
\Delta \theta \\
\Delta|\mathbf{V}|
\end{array}\right]=\left[\begin{array}{c}
\Delta \mathbf{P}(\mathrm{x}) \\
\Delta \mathbf{Q}(\mathrm{x})
\end{array}\right]
$$

For the $n^{\text {th }}$ iteration, we can rearrange equation (18) to get

$$
\left[\begin{array}{c}
\theta^{n+1} \tag{19}\\
|V|^{n+1}
\end{array}\right]=\left[\begin{array}{c}
\theta^{n} \\
|V|^{n}
\end{array}\right]-\left[\mathbf{J}\left(x^{n}\right)\right]^{-1}\left[\begin{array}{c}
\Delta P\left(x^{n}\right) \\
\Delta Q\left(x^{n}\right)
\end{array}\right]
$$

The expressions for the elements of \mathbf{J} can be found below:

$$
\begin{gather*}
J 1=\left\{\begin{array}{cc}
\frac{\partial P_{i}}{\partial \theta_{i}}=-\sum_{k \neq i}\left|V_{i}\right|\left|V_{k}\right|\left(G_{i k} \sin \theta_{i k}-B_{i k} \cos \theta_{i k}\right) \\
\frac{\partial P_{i}}{\partial \theta_{k}}=\left|V_{i}\right|\left|V_{k}\right|\left(G_{i k} \sin \theta_{i k}-B_{i k} \cos \theta_{i k}\right) & i \neq k
\end{array}\right. \tag{20}\\
J 2=\left\{\begin{array}{cc}
\frac{\partial P_{i}}{\partial\left|V_{i}\right|}=2\left|V_{i}\right| G_{i i}+\sum_{k \neq i}\left|V_{k}\right|\left(G_{i k} \cos \theta_{i k}+B_{i k} \sin \theta_{i k}\right) & \\
\frac{\partial P_{i}}{\partial\left|V_{k}\right|}=\left|V_{i}\right|\left(G_{i k} \cos \theta_{i k}+B_{i k} \sin \theta_{i k}\right) & i \neq k
\end{array}\right. \tag{21}\\
J 3=\left\{\begin{array}{cc}
\frac{\partial Q_{i}}{\partial \theta_{j k}}=\sum_{k \neq i}\left|V_{i}\right|\left|V_{k}\right|\left(G_{i k} \cos \theta_{i k}+B_{i k} \sin \theta_{i k}\right) \\
\frac{\partial Q_{i}}{\partial \theta_{k}}=-\left|V_{i}\right|\left|V_{k}\right|\left(G_{i k} \cos \theta_{i k}+B_{i k} \sin \theta_{i k}\right) & i \neq k
\end{array}\right. \tag{22}\\
J 4=\left\{\begin{array}{cc}
\frac{\partial Q_{i}}{\partial\left|V_{i}\right|}=-2\left|V_{i}\right| B_{i i}+\sum_{k \neq i}\left|V_{k}\right|\left(G_{i k} \sin \theta_{i k}-B_{i k} \cos \theta_{i k}\right) \\
\frac{\partial Q_{i}}{\partial\left|V_{k}\right|}=\left|V_{i}\right|\left(G_{i k} \sin \theta_{i k}-B_{i k} \cos \theta_{i k}\right) & i \neq k
\end{array}\right. \tag{23}
\end{gather*}
$$

The diagonal elements of $J 1-J 4$ can also be written in the following form:

$$
\begin{equation*}
J 1_{\text {diag }}=\frac{\partial P_{i}}{\partial \theta_{i}}=-Q_{i}-B_{i i}\left|V_{i}\right|^{2} \tag{24}
\end{equation*}
$$

$$
\begin{align*}
J 2_{\text {diag }} & =\frac{\partial P_{i}}{\partial\left|V_{i}\right|}=P_{i}-G_{i i}\left|V_{i}\right|^{2} \tag{25}\\
J 3_{\text {diag }} & =\frac{\partial Q_{i}}{\partial \theta_{i}}=\frac{P_{i}}{\left|V_{i}\right|}+G_{i i}\left|V_{i}\right| \tag{26}\\
J 4_{\text {diag }} & =\frac{\partial Q_{i}}{\partial\left|V_{i}\right|}=\frac{Q_{i}}{\left|V_{i}\right|}-B_{i i}\left|V_{i}\right| \tag{27}
\end{align*}
$$

where P_{i} and Q_{i} are given by equation (10).
The solution strategy is:

1. Assign initial voltage magnitudes and zero phase angles (θ) to all buses. For PQ buses(load buses), the voltage magnitudes are set equal to 1.0; for PV buses (voltage-controlled/generator buses), the voltage magnitudes are specified.
2. Calculate P_{i}, Q_{i} using equation (10).
3. Calculate $\Delta P_{i}, \Delta Q_{i}$ using equation (15).
4. Calculate the element of Jacobian \mathbf{J} using equation (20) to (23).
5. Solve the linear equation of (18) to find $\Delta \theta$ and $\Delta|V|$.
6. Update new voltage magnitudes and phase angles using equation (19).
7. Continue until the residuals of ΔP and ΔQ are less than the specified tolerance.
