YBUS Admittance Matrix Formulation

Yousu Chen
PNNL

November 7, 2014

This document is a description of how to formulate the YBUS admittance matrix. In general, the diagonal terms $Y_{i i}$ are the self admittance terms and are equal to the sum of the admittances of all devices incident to bus i. The off-diagonal terms $Y_{i j}$ are equal to the negative of the sum of the admittances joining the two buses. Shunt terms only affect the diagonal entries of the Y matrix. For large systems, Y is a sparse matrix and it is structually symmetric.

Transmission Lines

Transmission lines run from bus i to bus j and are indexed by k. More than one transmission line can go between two buses.

$$
\begin{align*}
Y_{i j} & =\sum_{k} \frac{-1}{r_{i j k}+j x_{i j k}} \tag{1}\\
Y_{j i} & =Y_{i j} \tag{2}\\
Y_{i i} & =-\sum_{j \neq i} Y_{i j} \tag{3}\\
Y_{j j} & =-\sum_{i \neq j} Y_{j i} \tag{4}
\end{align*}
$$

where:
$Y_{i j}$: the $i j_{t h}$ element in the Y matrix.
i : the "from" bus.
j : the "to" bus.
k : the $k_{t h}$ transmission line from i to j.
$r_{i j k}$: the resistance of the $k_{t h}$ transmission line from i to j.
$x_{i j k}$: the reactance of the $k_{t h}$ transmission line from i to j.

Transformers

For a tap changing and phase shifting transformer, the off-nominal tap value can in general be considered as a complex number a, where the tap ratio is t and the phase shift is θ. Transformers are defined similarly to transmission lines and exist on a branch between bus i and bus j. Therefore, all transformer elements are subscripted by i and j. For simplicity, we assume that only one transformer line exists between two buses and if a transformer is present between two buses then no transmission lines exist between the two buses. The off-nominal tap ratio between buses i and j is defined as $a_{i j}=t_{i j} *\left(\cos \theta_{i j}+j * \sin \theta_{i j}\right)$. We can define

$$
\begin{align*}
y_{i j}^{t} & =\frac{-1}{r_{i j}+j x_{i j}} \tag{5}\\
Y_{i j} & =-\frac{y_{i j}^{t}}{a_{i j}^{*}} \tag{6}\\
Y_{j i} & =-\frac{y_{i j}^{t}}{a_{i j}} \tag{7}\\
Y_{i i} & =\frac{y_{i j}^{t}}{\left|a_{i j}\right|^{2}} \tag{8}\\
Y_{j j} & =y_{i j}^{t} \tag{9}
\end{align*}
$$

where:
$Y_{i j}$: the $i j_{t h}$ element in the Y matrix.
i : the "from" bus.
j : the "to" bus.
$r_{i j}$: the resistance of the transformer between i and j.
$x_{i j}$: the reactance of the transformer between i and j.
$t_{i j}$: the tap ratio between bus i and bus j.
θ_{i} : the phase on bus i.
θ_{j} : the phase on bus j.
$\theta_{i j}=\theta_{i}-\theta_{j}$: the phase shift from bus i to bus j.
$a_{i j}^{*}$: the conjugate of $a_{i j}$.
Given the bus admittance matrix Y for the entire system, the transformer
model can be introduced by modifying the elements of the Y-matrix derived from the transmission lines as follows:

$$
\begin{align*}
Y_{i j}^{\text {new }} & =-\frac{y_{i j}^{t}}{a_{i j}^{*}} \tag{10}\\
Y_{j i}^{\text {new }} & =-\frac{y_{i j}^{t}}{a_{i j}} \tag{11}\\
Y_{i i}^{\text {new }} & =Y_{i i}+\frac{y_{i j}^{t}}{\left|a_{i j}\right|^{2}} \tag{12}\\
Y_{j j}^{\text {new }} & =Y_{j j}+y_{i j}^{t} \tag{13}
\end{align*}
$$

Note that since we are assuming that a branch with a transformer on it does not carry any additional transmission lines, the $Y_{i j}^{\text {new }}$ do not have any contributions from $Y_{i j}$.

For shunts

Shunts only contribute to diagonal elements. The sources of shunts include:

- shunt devices located at buses $\left(g_{i}^{s}+j b_{i}^{s}\right)$;
- transmission line/transformer charging $b_{i j k}$ (distributed half to each end) from end: $b_{i k}=0.5 b_{i j k}$; to end: $b_{j k}=0.5 b_{i j k}$;
- transmission line/transformer shunt admittance, which is normally a small value: $\left(g_{i j k}^{a}+j b_{i j k}^{a}\right)$; the shunt admittance contributes the same amount to both ends of the line

Therefore, the general equation for diagonal elements is:

$$
\begin{align*}
& Y_{i i}^{t o t}=-\left(\sum_{j \neq i} Y_{i j}^{n e w}\right)+g_{i}^{s}+j b_{i}^{s}+\sum_{k}\left(j b_{k i}+g_{k i}^{a}+j b_{k i}^{a}\right) \tag{14}\\
& Y_{j j}^{t o t}=-\left(\sum_{i \neq j} Y_{j i}^{n e w}\right)+g_{j}^{s}+j b_{j}^{s}+\sum_{k}\left(j b_{k j}+g_{k j}^{a}+j b_{k j}^{a}\right) \tag{15}
\end{align*}
$$

where:
$Y_{i j}^{\text {tot }}$: the $i j_{t h}$ element in the Y matrix.
i : the "from" bus.
j : the "to" bus.
k : the $k_{t h}$ transmission line/transformer from i to j.
$g_{i}^{s}+j * b_{i}^{s}$: the shunt at bus i.
$b_{i j k}$: the line charging of the $k_{t h}$ line.
$b_{i k}=0.5 * b_{i j k}$: the line charging of the $k_{t h}$ line assigned to "from" end i.
$b_{j k}=0.5^{*} b_{i j k}$: the line charging of the $k_{t h}$ line assigned to "to" end j.
$g_{k i}^{a}+b_{k i}^{a}=g_{i j k}^{a}+j b_{i j k}^{a}$: the $k_{t h}$ line shunt admittance at "from" end i.
$g_{k j}^{a}+b_{k j}^{a}=g_{i j k}^{a}+j b_{i j k}^{a}$: the $k_{t h}$ line shunt admittance at "to" end j.

