Difference between revisions of "GridPACK Application Concept (State Prediction)"

From GridPACK
Jump to: navigation, search
Line 1: Line 1:
= ''' State Estimation ''' =
+
= ''' State Prediction''' =
 
'''Title:''' ''A Statistical State Prediction Methodology to Improve Reliability and Efficiency of Power System Operation''
 
'''Title:''' ''A Statistical State Prediction Methodology to Improve Reliability and Efficiency of Power System Operation''
  
This project is motivated by the challenges of increasing uncertainty and variation brought in by the high penetration of renewable generation to power grid operation. A state estimator is an essential tool for power grid operation.
+
'''Team:''' N Zhou, DJ Haglin, FK Tuffner, Y Chen, TA Ferryman, G Lin, J Yin, M Vlachopoulou
 +
 
 +
This project is motivated by the challenges of increasing uncertainty and variation brought in by the high penetration of renewable generation to power grid operation. A state estimator is an essential tool for power grid operation. Due to the delays from communications and computations, current state estimators can only provide power grid status in the past. This delay has typically been on the order of 2 to 5 minutes, and recent developments may reduce this delay to 30 to 45 seconds. Even with the relatively fast update on the state estimates, the power grid has to be operated based on its past states. Scheduling interchanges and dispatching generation is currently handled through forecasting of the system demand. This kind of practice is acceptable when a power grid does not change very much or does not deviate from the forecasting model significantly. However, with high level penetration of renewable generation (e.g., wind and solar), the North American power grid is going to experience significant levels of variation and uncertainty in power flow. With quick changes and large uncertainty brought in by renewable generation, operations based on the past deterministic states can lower the reliability and efficiency of power grid operation.
 +
 
 +
The study will result in a power system state predictor, which cannot only provide prediction of power system states, but also quantify prediction errors (or uncertainty) on those estimates. The prediction method can generate power system state estimates for the current and future time. Combined with past states from a traditional state estimator, the state predictor can provide a whole picture of the power system, in the past, current and future with uncertainty quantification. It is expected that the whole picture can improve operator’s situational awareness of the power grid and risks, enable the proactive operation of the power grid, and thus help improve operational efficiency and reliability.

Revision as of 20:31, 12 March 2012

State Prediction

Title: A Statistical State Prediction Methodology to Improve Reliability and Efficiency of Power System Operation

Team: N Zhou, DJ Haglin, FK Tuffner, Y Chen, TA Ferryman, G Lin, J Yin, M Vlachopoulou

This project is motivated by the challenges of increasing uncertainty and variation brought in by the high penetration of renewable generation to power grid operation. A state estimator is an essential tool for power grid operation. Due to the delays from communications and computations, current state estimators can only provide power grid status in the past. This delay has typically been on the order of 2 to 5 minutes, and recent developments may reduce this delay to 30 to 45 seconds. Even with the relatively fast update on the state estimates, the power grid has to be operated based on its past states. Scheduling interchanges and dispatching generation is currently handled through forecasting of the system demand. This kind of practice is acceptable when a power grid does not change very much or does not deviate from the forecasting model significantly. However, with high level penetration of renewable generation (e.g., wind and solar), the North American power grid is going to experience significant levels of variation and uncertainty in power flow. With quick changes and large uncertainty brought in by renewable generation, operations based on the past deterministic states can lower the reliability and efficiency of power grid operation.

The study will result in a power system state predictor, which cannot only provide prediction of power system states, but also quantify prediction errors (or uncertainty) on those estimates. The prediction method can generate power system state estimates for the current and future time. Combined with past states from a traditional state estimator, the state predictor can provide a whole picture of the power system, in the past, current and future with uncertainty quantification. It is expected that the whole picture can improve operator’s situational awareness of the power grid and risks, enable the proactive operation of the power grid, and thus help improve operational efficiency and reliability.